Плавный пуск ламп накаливания

Плавный пуск ламп ближнего света. — logbook Subaru Forester S12 XR 61K EJ204 2008 on DRIVE2

Плавный пуск ламп накаливания

Плавный пуск ламп накаливания

Недавно в очередной раз перегорела лампа ближнего света.Кто не в курсе — у нас базовая машина. Ближний — галоген Н7, автокорректора нет, в салоне классическая крутилка корректора фар.

Лампы используем всегда Osram “Original” 64210.

При снятии кетай-ксенона с Лача, я на нее установил плавный пуск ламп ближнего света.
Естественно, этот девайс я сразу делал в 2х экземплярах. И вот по случаю замены ламп, я его установил и на Форь.

Подключается в разрыв плюсового провода питания лампы. Устанавливается между разъемом лампы и лампой, внутри фары.

Выглядит так:

С установкой и размещением никаких сложностей не возникло — в фаре Форя огромное количество свободного места:

Модуль отлично вписывается между отражателем и корпусом фары, при этом абсолютно не мешает корректору двигать отражатель:

Правая фара

Левая фара

Видео “как это работает” я снимал еще для записи в БЖ Лача. Но марка/модель машины суть этого устройства не меняет.

На примере ПТФ Лача, “на коленке”:

Уже установлено на машину:

Писать мноха букафф мне лень, тем более второй раз. 🙂

Поэтому тупо копирую свое сочинение из БЖ Лача:Существует теория, что в момент включения нить лампы испытывает перегрузку. Т.к. сопротивление холодной нити гораздо, в 10-15 раз, ниже, чем «разогретой» работающей нити. Т.е. при включение через нить протекает ток в 10-15 выше, чем номинальный рабочий ток нити.

Также есть теория, что при включении нить лампы прогревается неравномерно. Соответственно, участки нити, которые быстрее прогрелись, и расширяются быстрее. И поэтому в нити возникают достаточно высокие внутренние механические напряжения, которые в один прекрасный момент рвут нить.

Какая из этих теорий верна не знаю. Вполне возможно, обе теории имеют место и дополняют одна другую.
Но я абсолютно согласен, что в подавляющем большинстве случаев, лампа перегорает именно в момент включения.

Сразу же, немного забегая вперед, приведу живой пример:
Меняя лампы на Narva RangePower White, я делал фото с одной лампой Бош, а второй – Нарва. Для иллюстрации различий.

Так вот, поменял я лампу в левой фаре и установил на нее сразу же блок плавного розжига, в правой оставил Бош без блока. Включаю ближний свет, чтобы сделать фото… А правая фара не горит, хотя 2 минуты назад работала.

Нить оборвалась у обоих точек крепления к электродам. И произошло это именно в момент включения света.

Таким образом, чтобы продлить срок службы ламп, нам необходимо убрать перегрузку нити при включении.Если ориентироваться на первую теорию, то решением будет плавное включение – т.к. напряжение будет увеличиваться плавно, то и ток не будет ее перегружать.

В случае второй теории, плавное поднятие напряжения, также уменьшит нагрузку на нить, обеспечив более плавный прогрев нити при включении, тем самым убрав внутренние механические напряжения в самой нити.

В интернете выложено множество различных схем устройств плавного включения – от примитивных (на полевике и двух-трех резисторах) до пацанячих (на контроллерах ATTiny). Мне приглянулась схема на регуляторе напряжения MC34063.

Наблюдаем, тестируем… Когда сгорит первая лампа на одной из 2х машин, можно будет строить какие-то выводы…

Схема плавного включения ламп накаливания

Плавный пуск ламп накаливания

В некоторых случаях возникает необходимость в регулировании или управлении яркостью свечения одной или нескольких ламп.

Для этого существует специальная схема плавного включения ламп накаливания, позволяющая полностью контролировать этот процесс. В настоящее время, разработано и применяется большое количество подобных устройств.

Все они имеют собственные положительные и отрицательные стороны. Некоторые из них отличаются большими размерами, незначительным сроком службы.

Отдельные конструкции могут иметь излишне увеличенное число компонентов, низкий коэффициент полезного действия. Однако, существуют схемы, практически лишенные этих недостатков и прекрасно выполняющие все необходимые функции. Для того, чтобы правильно выбрать наиболее оптимальный вариант, нужно знать принцип и порядок работы таких устройств.

Принцип работы плавного включения

Как правило, качественные современные устройства отличаются компактностью и могут подключаться в разрыв любых проводов, независимо от того, фаза это или ноль. Поэтому, при наличии уже действующей схемы освещения, устройство плавного включения может быть подключено без особых проблем. При желании, сам прибор размешается непосредственно внутри корпуса люстры, настольной лампы или бра.

Основными существующими компонентами являются лампа накаливания и сам выключатель. Все остальные подключения строятся вокруг них, играя дополнительную роль. В таких схемах может использоваться и более одной лампы накаливания.

В этом случае, они соединяются параллельно, а их суммарный ток не должен быть больше допустимого тока симистора. В противном случае, симистор просто перегорит. Включение симистора в цепь производится в разрыв провода, расположенный между выключателем.

При выключенном симисторе, конденсатор разряжен, а напряжения на нем нет вообще.

При включении симистора, конденсатор начинает заряжаться. В результате, происходит открытие динистора за счет увеличения прилагаемого напряжения. После этого, открывается второй симистор, что приводит к увеличению яркости лампы накаливания. Весь этот процесс управляется с помощью интегратора.

Уменьшение или увеличение скорости, с какой нарастает яркость свечения, осуществляется путем подбора резистора. При стандартном сопротивлении в 300 килоом, полная яркость лампы накаливания наступит в течение 10 секунд. Для того. Чтобы полностью разрядить конденсаторы, применяются два резистора. Разрядка производится при отключенном выключателе, а устройство готовится к новому включению.

Когда работает схема плавного включения ламп накаливания, напряжение на них составляет всего 200 вольт при стандартном напряжении в сети 220-230 вольт. Это позволяет значительно увеличить срок службы таких ламп.

Плавное включение лампы накаливания

Электрика: плавное включение света фар — Сообщество «Кулибин Club» на DRIVE2

Плавный пуск ламп накаливания

Это будет ещё один вариант схемы плавного включения фар.

Для начала немножко теории.

Многие, наверное, замечали, что перегорание ламп накаливания в подавляющем большинстве случаев приходится на момент их включения. Отчего же это происходит?

Виноват в этом, разумеется, Георг Ом со своим законом. Дело в том, что сопротивление холодной нити лампы в 10-12 раз ниже, чем в разогретом состоянии. По закону Ома, ток в цепи обратно пропорционален сопротивлению: I = U / R.

Значит ток в цепи каждой лампы тоже в момент включения в 10-12 раз выше номинального, то есть, для стандартной лампы 55Ватт он может достигать 60 Ампер! Но в течение каких-то сотых долей секунды нить нагревается, сопротивление увеличивается и ток падает до номинального уровня.

Обычно этот момент проходит так быстро, что ничуть не вредит ни реле, ни предохранителю, которые подводят ток к двум лампам и рассчитаны на ток куда ниже 120 Ампер.
Рассмотрим чуточку подробнее, что же страшного может случиться в этот краткий миг включения.

Для этого рассмотрим нить лампы под электронным микроскопом:

Ладно, сознаюсь: я соврал! Нет у меня никакого электронного микроскопа, а этот рисунок я нарисовал мышкой в Паинте.

Спиралька не идеальная, какие-то участки её оказываются потоньше, какие-то потолще.

Очевидно, теплоёмкость тонких участков оказывается меньше, а значит, при таком же протекающем токе, они быстрее нагреваются.

Как было упомянуто ранее, сопротивление нагретой спирали больше сопротивления холодной. Ток, как мы знаем, одинаков во всех участках цепи, а по тому же закону того же Георга, падение напряжения на участке цепи равно произведению значений силы тока и сопротивления этого участка. U = I * R.

Это значит, что падение напряжения на втором, “тонком” участке будет больше чем на других.
Мощность высчитывается как произведение тока на напряжение: P = I * U. А это значит что на этом самом тоненьком участке цепи будет рассеиваться самая большая мощность.

В результате, пока соседние участки не спешa нагреваются, тоненький отрезок спирали успеет немного выгореть и стать ещё тоньше к следующему включению лампы. А значит при следующем включении различие в нагреве разных участков спирали будет ещё более выраженным.

Ситуация будет ухудшаться с каждым включением, пока не произойдёт:

Что же делать?

Выход прост: ограничить рассеиваемую мощность, уменьшив ток в цепи. Существует несколько разных вариантов как этого добиться, и самые распространённые из них это:

1. Использование NTC термистора и реле.

Термистор около 2-5 Ом (при 25 градусах) включается последовательно с лампой, и часть мощности рассеивается на нём, нагреваясь он уменьшает своё сопротивление, в то время как лампа — плавно разгорается и увеличивает сопротивление.

Через некоторое время падение напряжения на лампе окажется достаточным, чтобы замкнуть обмотку включенного параллельно с ней реле. Контакты реле замыкают термистор, исключая его из цепи и передавая тем самым всю мощность лампе.

2. Использование мощного полевого транзистора с конденсатором на затворе. Принцип аналогичен предыдущему. Но вместо термистора ток ограничивается полевым транзистором, затвор которого медленно заряжается, и ток в цепи плавно повышается.

При этом на транзисторе в момент включения рассеивается значительное количество тепла, что требует его охлаждения.

Однако в полностью открытом состоянии, за счёт низкого сопротивления сток-исток, почти вся мощность идёт на лампу, в результате дополнительное реле не требуется.

3. Широтно-импульсная модуляция. Этот вариант отличается от предыдущих тем, что управляющая схема не ограничивает ток, что уменьшает рассеиваемую на ней мощность, а значит и требования к охлаждению.

Вместо этого схема при помощи того же полевого транзистора подаёт ток краткими импульсами, длительностью в несколько десятков микросекунд.

За такое короткое время участки нити не успевают нагреться до опасных значений, а в те моменты когда ток через цепь не идёт, тепло с более нагретых участков нити успевает перераспределиться на менее нагретые участки, в результате чего сопротивление разных участков цепи выравнивается.

Распределение тепла

Именно этот вариант я выбрал для реализации.

Хотелки

Вот что мне хотелось добиться от своей схемы плавного включения света:

1) Распознавание первого включения после включения зажигания. У меня на машине лампы H4 — ближний и дальний в одной колбе.

Если зажигание только включено, то свет должен разгораться плавно, чтобы плавно разогреть холодные спираль и колбу.

Зато, если зажигание не выключалось, а ближний свет был выключен и включен снова — а такое происходит при включении дальнего света — разогрев должен происходить быстрее, дабы дорога была освещена.

2) Удержание в пол-накала в течение секунды после выключения. В моменты мигания дальним светом, ближний также выключается. Такой алгоритм поможет нити лишний раз не остывать и быстро вернуть свет на прежний уровень.

3) Максимальное снижение энергопотребления схемой при отключении зажигания. Токи утечки должны быть минимальными.

4) Схема должна быть собрана в корпусе штатного реле. Схема не должна требовать вмешательства в проводку, дополнительных проводочков-подключений и полностью заменять штатное реле, а при необходимости — быть заменённой обратно простой перестановкой реле.

Схема подключения штатного реле

Определившись с требованиями, я стал изучать, как подключено штатное реле

Оказалось, в моей машинке выключатель света замыкает минусовой провод обмотки, а реле зажигания — плюсовой.

Очевидно, что при выключении света, будет отключен также и “минус” для питания схемы. Однако, согласно моим хотелкам, схема должна продолжать работать в этой ситуации, мало того — даже держать фары включенными в пол-накала! Идея заключается в том, чтобы брать “минус” для питания схемы с фар.

Схема электронного реле

В итоге родилась такая схема:

Логика управления реализуется микроконтроллером ATtiny13A. Для питания используется линейный стабилизатор 79L05 отрицательного напряжения -5 Вольт, то есть у всей схемы общим является “плюс”.

VD3 и VD4 обеспечивают схему “минусом”. Это “быстрые” диоды. Пока выключатель света замкнут, минус идёт с него. Когда он разомкнут, микроконтроллер управляет фарами в режиме широтно-импульсной модуляции. В моменты, пока транзистор закрыт, “минус” появляется через лампы фар.

VT4 — силовой pMOSFET, который и подаёт ток на фары. IRF9310 хоть мал и невзрачен на вид, но сопротивление сток-исток у него в открытом состоянии максимум 6,8 миллиОма. Он легко тянет 20 Ампер, а импульсами и все 160.

VT1 — этот друг обесточивает схему, когда зажигание выключено. Благодаря ему потребление тока в выключенном состоянии меньше микроампера.

C1 — конденсатор питает схему в те моменты когда выключатель света разомкнут, а транзистор VT4 открыт. Схема уверено работает и при 15 микрофарадах.

R4 — нужен чтобы снизить ток, который хлынет в разряженный C1 при первом включении. Это снизит нагрузку на транзистор и на сам конденсатор. R6 — позволяет ещё дополнительно снизить ток через выключатель.

VT2 — нужен для информирования МК о том что зажигание выключено и конденсатор вот-вот разрядится. В открытом состоянии он замыкает вывод PB4 микроконтроллера на линию -5 Вольт. В закрытом, вывод PB4 микроконтроллера подтягивается к “питанию” встроенным резистором.

На его месте можно было бы использовать простой диод, катодом идущий на вход микроконтроллера, а сам вход подтянуть к “GND” резистором. Однако возможна ситуация когда на линиях зажигания и питания фар окажется значительная разность потенциалов — например, при повреждении реле фар. В этом случае такое подключение убило бы микроконтроллер.

Использование транзистора немного усложняет схему, но зато исключает подобные казусы.

VT3 — точно также информирует МК, но о том, что замкнут выключатель света. Он, наоборот, притягивает вход PB3 к “питанию”, а в закрытом состоянии этот вход притянут резисторм R7 к “GND”. Когда выключатель разомкнут, микроконтроллер должен как можно быстрее перейти к ШИМ-управлению лампами, чтобы давать возможность конденсатору подзарядится в моменты, когда VT4 закрыт.

Пару слов об отводе тепла

Здесь используется один силовой транзистор. По расчётам, при токе 11 Ампер (взято с запасом) и его сопротивлении 6,8мОм (максимум) на нём будет рассеиваться 0,822 Ватта. Что достаточно немного. Однако в тесном корпусе реле негде разместить радиатор.

Для эффективного отвода тепла, сток транзистора припаивается как можно ближе, под обильным припоем, к ножке корпуса, которая обладает хорошей теплопроводностью и отводит тепло наружу, в массивную колодку реле и далее в корпус машины.

Эксперимент показал, что даже в неподключенном к колодке реле, транзистор нагревается всего на 30-35 градусов.

К слову, штатное реле потребляет ток около 150 миллиампер, и рассеивает почти 2 Ватта тепла.

Изготовление реле

Почти одновременно с этой задумкой, я обнаружил, что если вынуть в блоке предохранителей шунт и вставить в его место нормальное реле, то включится опция дневных ходовых огней.

Реле в KIA довольно занимательные, симметричные: втыкай хоть так, хоть эдак. Пара контактов по диагонали — это обмотка, а по другой диагонали — замыкаемые.

Это даёт некоторые неудобства: электронное реле нельзя втыкать “абы как”.

В результате в руках у меня оказался шунт, который внешне мало отличим от реле, а кишочки у него выглядят так:

Он куда удобнее для обработки и размещения внутри всяких схем, чем обычное реле. Поработав немного ножовкой и надфилями получилось что-то такое:

Вначале по разработанной схеме был собран прототип:

Так как места в корпусе не слишком много, методом ЛУТ я изготовил двустороннюю плату 19х18мм.

Первая сторона, нанесён тонер

Вторая сторона, вытравил

Просверлил, зачистил и обточил до нужной формы

Залудил

Напаял элементы с одной стороны

Напаял элементы с другой стороны

В конце приладил плату к ножкам:

Реле готово. Осталось только приделать на кожух предупреждающую надпись, и надеть его:

Резюме

Вот уже несколько месяцев эта поделка исправно работает. Заморозки пережила, посмотрим как будет в жару.Помогает ли лампам? Не знаю. По расчётам мои текущие лампы должны закончить свой бренный путь в июле — предыдущие той же модели жили ровно по 8 месяцев. Если до августа доживёт — значит эффект есть.

Знающие люди мне сказали что такой долгий розжиг ламп ни к чему, но всё равно смотрится красиво. Дополнительно сделал подобные реле, но с другими алгоритмами работы на дальний, противотуманки и даже габаритки.

Видео

Видик с примером работы:

Дополнительная информация по теме в моём БЖ

Исходники для прошивки на моём сайте

Схема плавного включения ламп накаливания (УПВЛ) 220в, 12в

Плавный пуск ламп накаливания

Любой экономный хозяин дома или квартиры стремиться к тому, чтобы рационально пользоваться электрической энергией, так как цены на неё достаточно высокие.

Так, например, при некорректном использовании обычной лампы накаливания она будет регулярно «перегорать».

Поэтому для того чтобы она смогла прослужить вам намного дольше специалисты рекомендуют использовать такие устройства, как приборы плавного включения. Также можно самостоятельно сделать такой блок, используя определённую схему.

Принцип работы УПВЛ

При резком потоке электроэнергии лампа накаливания очень быстро изнашивается и вольфрамовая нить перегорает. Но если температурный режим нити и электрического тока будет примерно одинаковый, то процесс будет стабилизирован и лампа не перегорит. Для того чтобы источники света работали как положено, необходимо иметь специальный блок питания.

Благодаря специальному датчику нить будет накаляться до необходимой температуры, и уровень напряжения будет увеличиваться до точки, указанной пользователем. Например, до 176 Вольт. В этом случае блок питания поможет существенно увеличить срок работы лампы.

Устройство плавного включения ламп

Блок защиты имеет один недостаток — в помещении свет будет гореть значительно слабее.

В том случае, если напряжение будет 176 В, то уровень освещения снизится примерно на две трети. Поэтому специалисты рекомендуют приобретать мощные лампы, чтобы качество света было нормальным.

В настоящее время существуют специальные блоки плавного включения (УПВЛ) ламп накаливания, которые отличаются различными параметрами мощности. Поэтому, прежде чем покупать блок, необходимо убедиться, сможет ли он выдержать большие скачки или перепады напряжения в электросети.

Такое устройство обязательно должно иметь дополнительный запас, при этом будет вполне хватать того, чтобы напряжение в вашей электросети было больше потока скачков примерно процентов на 30.

Необходимо знать, что чем выше будет нормативный показатель, тем больше будут габариты блока питания. В настоящее время можно приобрести блок питания мощностью от 150 до 1000 Ватт.

Виды блоков питания и их характеристики

Сегодня существует множество различных устройств плавного включения ЛН. Самыми востребованными являются:

  • Блоки УПВС, представляющие собой базовые версии, которые имею достаточно невысокую стоимость, поэтому используются большинством потребителей.УПВЛ базовой версии
  • Блоки Гранит имеют высокое качество изготовления и обладают длительным сроком службы. Такое устройство очень простое в работе и установке.Устройство плавного включения Гранит
  • Блок Навигатор (Navigator) применяется не только для ЛК (ламп накаливания), но и для галогеновых. Это универсальное многофункциональное устройство достаточно небольшое по габаритам, поэтому не займёт много места.Устройство плавного включения Навигатор

Схемы

Для того чтобы правильно использовать блоки плавного включения ЛК необходимо использовать специальные электросхемы. Благодаря таким схемам можно легко понять, как работает данный прибор и устроен изнутри, а также как его необходимо эксплуатировать.

Схема плавного включения лампы накаливания

Обычно при подключении такого устройства специалисты пользуются наиболее простым и лёгким вариантом схемы. Иногда используют специальную схему с внедрением симистеров. Также, кроме блоков данного вида можно брать полевые транзисторы, которые работают аналогично приборам плавного включения.

Вторая схема плавного включения ламп накаливания

Также того чтобы можно было контролировать напряжение в приборе плавного включения можно использовать автоматические приборы.

Что собой представляет тиристорная схема

Тиристорную схему специалисты рекомендуют использовать для повторения. Состоит она из обычных элементов, которые можно найти в каждом доме. Такую схему можно легко сделать в домашних условиях своими руками.

Тиристорная схема плавного включения лампы

Цепь моста выпрямления (рис.VD1, VD2, VD3, VD4) использует лампочку (рис. EL1) как нагрузку и токоограничитель. Плечи выпрямителя оснащены тиристором (рис. VS1) и сдвигающейся цепью (рис. R1, R2 и C1). Также диодный мост устанавливается за счёт спецификации работы прибора тиристора.

После того как напряжение подаётся на схему, электроток начинает идти через спираль накала и поступает на мост, а затем посредством резистора осуществляется зарядка электролита.

Когда достигается предел напряжения открытия тиристора, он начинает открываться и тогда через него проходит ток от лампочки. В результате этого вольфрамовая нить разогревается постепенно и плавно.

Период ее разогрева будет зависеть от ёмкости находящегося в схеме устройства конденсатора и резистора.

Чем примечательна симисторная

Такая схема имеет меньшее количество деталей за счёт применения симистора (рис. VS1), который служит силовым ключом.

Симисторная схема плавного включенияламп

Такой элемент, как дроссель (рис. L1), который предназначен для удаления различных помех, появляющихся во время открытия силового ключа, разрешено убрать из общей цепи. (рис. R1)Резистор является ограничителем тока, который поступает на главный электрод (рис. VS1).

Цепь, которая задаёт время, исполнена на резисторе (рис. R2) и ёмкости (рис. С1), питающимися посредством диода (рис. VD1). Данная схема работает также как и предыдущая.

Когда конденсатор заряжается до уровня напряжения открытия симистора, он начинает открываться, а затем через него и лампочку поступает электрический ток.

Схема плавного включения ламп накаливания

На фотографии внизу мы можем увидеть симисторный регулятор. Такое устройство кроме регулировки мощности в нагрузке, также осуществляет плавное поступление электротока на лампочку, когда её включают.

Устройство плавного включения ламп накаливания

Схема работы блока на специализированной микросхеме

Микросхема типа кр1182пм1 была специально создана специалистами для построения различных фазовых регуляторов.

Схема плавного включения на специализированной микросхеме

В этом случае происходит так, что с помощью самой микросхемы происходит регулирование напряжения на источнике, который обладает мощностью до 150 ватт.

А если понадобится управлять более сильной системой нагрузки и десятками осветительных приборов одновременно, то в управленческую цепь просто включается дополнительно силовой симистр.

На рисунке внизу мы можем увидеть, как это происходит.

Схема плавного включения с силовым симистром

Применение блоков плавного включения не заканчивается только на обычных лампах, так как специалисты рекомендуют использовать их вместе с галогеновыми лампами, мощностью в 220 В.

Важно знать! С люминесцентными и LED лампами (светодиодными) такие блоки устанавливать нельзя.

Это связано с тем, что здесь присутствует различная техника разработки схем, а также принцип действия и присутствие у каждого осветительного прибора своего источника размеренного нагрева для люминесцентных ламп или нет потребности в таком регулировании ламп LED.

Устройство плавного включения (УПВЛ) для ламп накаливания в 220в и 12в

На сегодняшний день производится большое количество различных моделей УПВЛ, которые отличаются между собой по функциям, стоимости и качеству. Устройство, которое продаётся в специализированных магазинах, подключается последовательно к источнику света на 220 В. Схему и внешний вид устройства мы можем увидеть на фотографии внизу.

Схема устройства плавного включения для ламп на 220 В

Если же мощность питания ламп 12 или 24 В, то прибор необходимо подключать перед понижающим трансформатором также последовательно к начальной первичной обмотке.

Прибор должен соответствовать нагрузке, которая будет подключаться с определённым запасом. Для этого надо подсчитать число светильников и их общую мощность.

Так как устройство имеет небольшие размеры, то УПВЛ можно разместить под люстрой, в подрозетнике или в коробке соединения.

Диммеры или светорегуляторы

Экономически выгодно и рационально использовать приборы, создающие плавное включение ламп, а также обеспечивающие процесс регулирования их степени яркости. Диммеры различных моделей могут:

  • Задавать программы работы осветительных приборов;
  • Плавно включать и выключать лампы;

Плавное включение освещения большой мощности на КР1182ПМ1

Плавный пуск ламп накаливания

Сегодня я снова лезу в архивы, попивая зелёный чай с жасмином, и откапываю разные интересности. На этот раз это будет аналог блоков защиты галогенных ламп типа «Гранит«, но только значительно мощнее: от 1 киловатта и выше.

Достоинство схемы ещё в том, что она практически полностью кулибинская — то-есть собирается почти на коленках и гаечек и винтиков и практически любых симисторов, какие есть под рукой.

А основой схемы служит известная почти всем микросхема фазового регулятора мощности КР1182ПМ1 разработки НТЦ СИТ.

Она умеет не только регулировать простейшие 100-ваттные лампочки без радиатора, но и «раскачивать» довольно мощные симисторы (на практике использовались например ТС-160А (160-амперные, как следует из названия). А если симистора не хватает — то можно применить два тиристора, включённых встречно-параллельно.

На заглавном фото к статье — вообще раритет, прародитель современных диммеров — резисторный темнитель, который примерно до 2007 года использовался в ДК ФСБ России для плавного гашения и зажигания света в зрительном зале.

Устроен он до невозможности просто: мотор с редуктором крутит вал, по резьбе которого перемещается бегунок мощного графитового резистора. Ну и есть ручка, чтобы самому крутить, если что-то откажет… Это был небольшой бонус, а теперь немного грузилова и теории.

Плавное включение галогеновых (и обычных) ламп

Обычная лампа накаливания, будь это всем знакомый бытовой «шарик», мелкие галогенки или лампы в каких-то сценических прожекторах, состоит из вольфрамовой спирали (которая накаляется до температуры свечения электрическим током).

Именно из-за этого сейчас и стремятся отказаться от ламп накаливания — на свечение уходит примерно 5-10% энергии; остальная расходуется в тепло и инфракрасное излучние.

Но, с другой стороны свет от них содержит больше красных полос спектра, что делает его «мягче» и приятнее для глаз, нежели «офисный» свет ламп дневного света и энергосберегающих ламп (КЛЛ — Компактная Люминесцентная Лампа). Последние вообще на данный момент страшная муть: фактически это обычная «лампа-трубка», но запихнутая в формат лампы накаливания с сохранением схемы запуска.

Неисследованного ещё много. Электронная схема запуска может вертеть cos φ, сама схема компактная и поэтому работает в жутком температурном режиме… В общем — на данный момент от КЛЛ больше вреда, чем пользы.

Так вот. Пока вольфрамовая спираль холодная, её сопротивление примерно раз в 10 меньше, чем при работе лампы.

Из-за этого через тончайшую проволочку при включении лампы (а если синусоида сетевого напряжения в этот момент попадёт на амплитудный максимум, то вообще кошмар) протекает аналогично — ток в десят раз больше рабочего.

Вольфрамовая спираль может не выдержать такого издевательства и в один из прекрасных дней (или вечеров) попросту сгореть.

А если лампа используется в качестве временного источника освещения и её дёргают по нескольку раз за день/ночь? Например — прожектор с датчиком движения на садовом участке: пошли в туалет типа сортир — включилась. Вышли — опять включилась… Да ещё и на морозе? Вот и служат лампочки, особенно галогеновые, вместо 1000 часов, всего два-три дня (особенно китайские и дешёвые).

Эту проблему можно очень легко обойти, используя плавное включение лампы, то-есть попросту подавая нарастающее напряжение (идеальный вариант) или вначале «прогревая» спираль лампы напряжением в 1/2 или 1/4 рабочего (простые схемки).

Раньше в журнале «Радио» часто публиковали множество вариантов последних схем — например реле времени, которое, срабатывая через некоторое время, шунтирует диод, включённый последовательно с лампой: диод срезает половину сетевого напряжения, снижая его на лампе.

С появлением более-менее нормальной элементной базы тиристоров и симисторов, а вместе с ними и фазового принципа регулирования мощности и кучи диммеров, системы плавного включения стали делать на базе микроконтроллеров, и начался расцвет блоков «Гранит».

Микросхема КР11182МП1 — фазовый регулятор мощности

Это Российское творение является обособленным вариантом фазового регулятора мощности наравне с турецкими диммерами типа Vi-Ko и MAKEL, которые умеют делать это только переменным резистором и имеют всего ничего деталей. Наши пошли чуть дальше, оставив небольшой простор для кулибинства.

У микросхемы КР1182ПМ1 есть два отдельных управляющих входа, и она выполнена в корпусе PDIP16, что делает монтаж схемы на ней удобнее. Я положил на хостинг наиболее полный DataSheet на неё от производителя — Ссылка на DataSheet, где по этой микросхеме выдана наиболее полная информация и характеристики.

Все комментарии и пояснения будут далее относиться только к этому DataSheet’у.

Итак, давайте почитаем, что эта микросхема умеет:

  • Регулировка мощности до 150 Вт с минимальным охлаждением корпуса микросхемы (заточена под бытовые регуляторы типа «настольная лампа», гы);
  • Можно параллельно соединять несколько микросхем;
  • Минимальная и низковольтная обвязка (пара конденсаторов);
  • Умеет при изменении сопротивления на управляющем входе регулировать яркость.

В PDFнике приводится несколько типовых схем (копировать оттуда лень) — переменный резистор, выключатель и система плавного включения с конденсатором. Дополнительно с Сети встречались ещё варианты с фоторезистором (фотореле, датчик освещённости) и прочие приблуды.

Так как мы затачиваемся на плавное включение наших галогеновых ламп (для примера буду говорить о китайских прожекторах, которыми сейчас всё везде освещают, и лампы там горят чуть ли не каждую неделю), то рассмотрим подробнее эту схему с конденсатором и, заодно, включение и обвязку микросхемы.

Конденсаторы C1 и C2 (я буду стараться сохранять эту нумерацию) обычно берутся простые электролитические (и именно этим данная микросхема примечательна!) 1,0 мкФ х 16В (я обычно ставлю самый мелкий типоразмер 1,0 х 50В импортные), а конденсатор C3 подбирается экспериментально для желаемого времени плавного включения ламп и обычно его номинал находится в пределах 50-150 мкФ х 10-16 В. Опять же по напряжению можно взять с запасом. И всё! Мы получаем схему плавного включения на одной микросхеме и трёх конденсаторах. При включении питания конденсатор C3 разряжен, и его сопротивление стремится к нулю — микросхема КР1182ПМ1 выключена. Далее, при зарядке этого конденсатора его внутреннее сопротивление увеличивается, «регулируя» яркость и соответственно ток через лампу. Когда конденсатор C3 окончательно зарядится, его внутреннее сопротивление будет почти равно бесконечности, что для управляющего входа микросхемы означает 100%-ную мощность на выходе. Лампа горит. Ура!

Но давайте выключим схему и через полминуты включим снова? Что? Обломились? Плавного включения нет? Ага! А потому что конденсаторы (особенно современные) имеют офигенно малые токи утечки, и разрядятся может быть через дня два;) Так как мы делаем МОЩНУЮ схему, то морочиться не будем и введём сюда реле с нормально замкнутой группой контактов и дополнительное сопротивление R1. Вот что у нас получится:

Реле может быть любым, я использую миниатюрные с катушкой на ~220 вольт типа TRL-220VAC-S-2C, которое имеет две переключающие группы. Выбор реле вообще не принципиален, оно может быть любое, чуть ли не совковое РПУ-1 😉 Резистор R1 нужен для того, чтобы более-менее плавно разряжать конденсатор (не замыкать его накоротко) и может варьироваться около килоома.

Что получается: нормально замкнутыми контактами наш конденсатор и управляющий вход всегда замкнуты при отключённом напряжении питания.

Конденсатор C3, если он был заряжен, разряжается через резистор R1.

Заодно выполняется требование из DataSheet на микросхему КР1182ПМ1: желательно включать её в режиме нулевой мощности на нагрузке (замкнутые контакты C- и C+).

При подаче питания срабатывает реле, размыкая разряжающую цепочку и позволяя конденсатору спокойно заряжаться, как в предыдущей схеме — нашал лампочка опять зажигается плавно, в том числе при повторном включении. Этот баг пофиксили.

Увеличение выходной мощности КР1182ПМ1 (подключение тиристоров и симистора)

Но я же обещал мощную схему? А тут всего лишь микросхема в штатном режиме работы, с лампочкой не больше 150 ватт? Я исправляюсь и выкладываю следующие схемы.

Вот как надо подключать к микросхеме КР1182ПМ1 симистор.

Резистор R1 здесь ограничивает ток управляющего электрода симистора. Выбор его номинала зависит от типа самого симистора (надо смотреть DataSheet) и управляющего тока через него.

Не забывайте о том, что на этом резисторе может выделяться большая мощность! Например для одной из версий схемы с симистором ТС-160А (160-амперный) этот резистор был около 3-4,7 ом 5-тиваттной мощности! Сейчас есть хорошие резисторы серии SQP, которые отлично подходят под эти условия эксплуатации. Для симистора ТС-25 резистор R1 был 82 ома и 1-ваттный.

Схема подключения двух тиристоров (тиристоры раньше выпускались на более большие токи, и поэтому это было очень актуально) кажется немного абсурдной, однако если посмотреть на страницу 3 DataSheet’а, где показано внутреннее устройство микросхемы КР1182ПМ1, то видно, что мы «надставляем» штатные тиристоры внешними.

Правило для выбора резисторов R1 и R2 здесь такое же, как для предыдущей схемы. Не забывайте про мощность! В наших разработках использовались T-50 и T-160 с резисторами мощностью 1 Вт и сопротивлением 82 Ом.

Схема плавного включения ламп (мощная)

А теперь вспоминаем про нашу обвязку с реле и конденсатором и получаем вот такую итоговую конструкцию одного канала (однофазную) на примере тиристоров.

Если мы хотим собрать трёхфазную систему, то надо просто набрать три однофазных, соединив их вот так.

В этом случае реле можно применить с тремя переключащими группами одно на все три фазы при условии одновременного их включения. Сама схема, конечно же, может варьироваться в зависимости от нужд. И для примера я покажу два варианта её изготовления и применения.

Плавное включение дежурного освещения на сцене в ДК ФСБ России

Собственно в этом самом ДК ФСБ и происходила разработка и обкатка мощной версии этой системы, а дальше она собиралась на заказ под нужды клиентов.

В ДК ФСБ часто использовали так называемое «дежурное» освещение сцены. Это не две-три лампочки, как можно подумать — а целых 4 софита с киловаттными прожекторами (лампы — естественно театральные галогенки КГ-220-1000-4, одно время бывшие большим дефицитом).

Это освещение врубалось отдельными группами тумблерами с пульта управления сценой через мощные контакторы в щите и использовалось во время мелких репетиций (этот ДК сдают всем кому не лень), когда на сцене не весь театр, а три актёра и ради них никто не будет гонять полный свет сцены.

Вот светят им киловат 20 прожекторов — и хватит с них.

Лампы горели много часто, так как каждый второй не ленился пощёлкать тумблером — ушли на перекур — вырубили, пришли — врубили — поэтому отлаживать систему плавного включения на этих прожекторах было одно «удовольствие».

Система была собрана на большом куске изоляционного материала сразу на три фазы (но 4 канала — 4 софита) по той самой «типовой» схеме, которую я рассмотрел выше.

На каждый канал стояло по два тиристора ТС-160А, по одному реле с двумя контактными группами, одна из которых размыкала конденсатор у микросхемы, а вторая включала охлаждающий вентилятор.

Из-за такого использования реле схема включения вентилятора напоминала логическое ИЛИ, и он автоматически запускался при включении любого из каналов системы.

Все микросхемы КР1182ПМ1были собраны на единой для всех 4х каналов плате, снабжённой кроватками (socket), что позволяло оперативно заменить выгоревшую микросхему. Для пафоса (тупое начальство задавало вопросы типа «а почему тиристора два а микросхема одна??») и создания запаса ниже стояли никуда не подключённые новые микрухи 😉

Данная система, как видно из шильдика была запущена в 2002 году и работает до сих пор (на момент написания статьи), часто весь день, вытягивая по 5 кВт на канал легко и непринуждённо. За полсуток работы радиаторы нагреваются примерно до 30-40 градусов, то-есть почти холодные из-за применения мощных тиристоров с запасом (какие были,такие и поставили).

Плавное включение ночной подсветки вывесок магазина мебельной фабрики АБТ в Люблино

Аналогичная система, но на два канала, была изготовлена для подсветки магазина от фабрики АБТ, где я когда-то работал Админом, Электриком и 1Сером — короче на все руки Мастером ^_^

Вывеска представляла собой девять галогеновых прожекторов по 250Вт (итого 2,2 кВт) и световой короб из ламп дневного света, с которым при его подключении было порядочно возни (все дроссели проржавели нахер, пришлось снимать баннер и всё перебирать, меняя лампы).

Всё это чудо техники управлялось при помощи реле времени, которое вечером включало трёхфазный контактор, коммутировавший питание вывесок. Две фазы отводилось на прожектора, и одна фаза на световой короб. Схема была мило запихана в щиток и работала как часы, которые собственно и были в её составе;)

Мы с отцом решили сделать им подарок от фирмы и собрать на эти дешёвые прожектора аналогичную систему плавного включения. Она вышла совсем уж хиленькой и «домашней» по сравнению с тем монстром на 20 кВт, но тем не менее имела приличный запас по мощности.

Единственное, мы не позаботились о корпусе для неё — и его роль прекрасно сыграл обычный Vi-Koшный щиток на 24 модуля с вынутыми нафик внутренностями.

Вся эта силовая конструкция была запихана в корпус, подключена, собрана и испытана.

На ящик была наклеена грозная табличка «Не трогать», все щитки закрыты (кроме щитка с надписью «380» все наши — разрослась у нас там электрика;)), и система введена в эксплуатацию в 2007 году.

Всё то время, что я работал на фабрике (до 2008 года), лампочки никто не менял. В каком состоянии эта система на данный момент — неизвестно, да и в принципе наплевать. Итак — спасибо за внимание, экскурс в историю окончен — кулибинствуйте!

Если вас заинтересовала информация из этого поста и вы хотите со мной связаться (или заказать Сборку щита / Консультацию/Мастер-Класс), то пишите мне на почту info@cs-cs.net или звоните на +7-926-286-97-35 (c 10 до 20 по Москве).

На SMS и почту, написанную в одну строчку, я не отвечаю. Отзываюсь на имя Электрошаман.

Невнимательных, тупых и наглых продаванов и менеджеров я буду жёстко стебать, если они не заглянут в инфу про контакты для организаций, а скорее кинутся звонить.

Плавное включение ламп накаливания 220

Плавный пуск ламп накаливания

Для каждого рачительного хозяина важно, чтобы все лампочки функционировали как можно дальше. Для того чтобы продлить время использования этих осветительных приборов и смягчить значительные перепады напряжения при включении/выключении, используется устройство плавного включения ламп накаливания, или УПВЛ.

Как происходит перегрев нитей накаливания

Многие из нас были свидетелями того, как лампочка «бахает» – перегорает при включении. Это происходит, потому что слишком резкие амплитуды при включении сильно изнашивают нить накала.

В нерабочем состоянии сопротивление будет довольно низким. При нагреве во время обычного включения света по спирали сразу начинает идти довольно высокий ток, до 8 ампер.

Высокий ток при подаче напряжения заставляет работать спираль на пределе возможностей, и срок эксплуатации лампочки уменьшается.

Подключение с использованием блока защиты

Обычно для решения этой проблемы используется блок защиты, который и выполняет функцию УПВЛ. При использовании с лампами накаливания данного устройства напряжение при включении возрастает не так резко, а постепенно повышается. Таким образом, нить накаливания не испытывает излишних перегрузок, и срок эксплуатации лампочки возрастает.

Рассмотрим подробнее схему работы этого устройства на примере блока Uniel Upb-200W-BL, последовательно подключенного к лампе накаливания в 75 Вт. В этой схеме ток сначала проходит через блок и уже потом идет на лампу.

В результате этого происходит дополнительное падение напряжения, и на лампу поступает не стандартные 220, а 171 В. Причем за счет прохождения тока через блок защиты рост напряжения до 171 В происходит плавно за 2-3 секунды.

Uniel Upb-200W-BL для плавного запуска

Снижение поступающего напряжения также способствует увеличению сроку эксплуатации лампочки. Но, с другой стороны, пониженное напряжение значительно снижает световой поток, примерно, на 70 процентов, а это существенный показатель. Поэтому при использовании блока защиты необходимо учитывать потери по освещенности и использовать более мощные, по сравнению с обычными, лампы.

Рассматриваемый в нашей схеме блок может выдерживать мощность до 200 Вт, значит, к нему можно подключать лампы примерно такой же мощности.

Но лучше задать небольшой запас в 20-25 процентов и использовать в схеме лампы с суммарной мощностью не более 160 Вт. За счет запаса мощности лампы и сам блок прослужат дольше.

Естественно, что и на сам блок не стоит подавать напряжение больше, чем 200 ВТ.

Обратите внимание! При понижении мощности лампы накаливания цветовая температура изменяется, и свет становится более красным. Изменения цвета освещения может сказаться на самочувствии человека.

Схема плавного включения ламп накаливания довольно простая. Блок устанавливается последовательно от выключателя к лампе, то есть в разрыв фазного провода.

Сам блок зашиты можно разместить в двух местах:

  • рядом с осветительным прибором;
  • у выключателя – в этом случае блок располагается в распределительной или установочной коробке.
  • Выбор места зависит от размеров блока защиты, для слишком большого прибора придется выделять отдельное место. Недостаток размещения в подрозетнике состоит в том, что блок зашиты не будет иметь достаточного доступа воздуха для охлаждения.

    Как изготовить блок защиты самостоятельно

    Для создания блока можно применить следующую схему.

    Самодельный блок защиты для плавного включения ламп накаливания

    Устройство работает по следующему принципу:

  • Сначала полевой транзистор закрыт. На него идет стабилизационное напряжение. Лампа не горит;
  • При поступлении напряжение от резистора R1 и диода VD 1 конденсатор С1 заряжается до 9,1 В. Это максимальный уровень, который ограничивается параметрами стабилитрона;
  • Когда заданное напряжение достигнуто, транзистор постепенно открывается, а сила тока увеличивается. На стоке напряжение понизится. Нить накаливания лампы начнет плавно разжигаться;
  • Второй резистор контролирует степень разрядки конденсатора. За счет этого резистора конденсатор может продолжить разряжаться и после выключения питания.
  • Важно! Проводить самостоятельную установку любых электроустройств необходимо с точным соблюдением нормативов правил безопасности.

    Использование данного блока защиты позволяет не только осуществлять плавный пуск ламп накаливания, но и предохранить их от неприятного мерцания во время работы светильника.

    Использование диммирования

    Плавное включение ламп накаливания также может быть выполнено диммерами или светорегуляторами. Название диммер произошло от английского «dim», что означает затемнять. Здесь уровень подачи напряжения регулируется автоматическим или механическим (за счет вращения ручки) способом.

    У простых диммеров схема управления построена на реостате – переменном резисторе. Сейчас для этих целей используются полупроводниковые симмисторные или транзисторные ключи. В современной электротехнике для плавного включения ламп накаливания 220 Вт преимущественно используются приборы с таймером, сенсором или на дистанционном управлении.

    Обычно светорегуляторы устанавливаются вместо штатного выключателя.

    Важно! При установке диммера на лампы накаливания добиться экономии электроэнергии невозможно. Понижение уровня освещенности на 50 процентов экономит только 15% электричества.

    Схема подключения диммера

    В роторных диммерах накал галогеновых ламп регулируется при повороте ручки потенциометра. В электронных – все параметры задаются автоматически.

    Дополнительная информация. Диммер может создавать помехи в работе чувствительных измерительных устройств и радиоприёмников. Использование прибора иногда вызывает дополнительный фон при работе звукозаписывающего оборудования. Все это надо учесть при монтаже устройств.

    Собрать простой регулятор можно своими руками.

    Схема состоит из:

    • BT134 – симистора на 700 В, который можно заменить на КУ208Г, MAC212-8, MAC8S, BT138 или BT136;
    • DB3 – динистора, также можно использовать КН102, HT40 HT34, HT32, DC34, DB4;
    • неполярного конденсатора с емкостью от 0,1 до 0,22 мкФ (250 В);
    • резистора (10 кОм) с максимальной мощностью от 0,25 до 2 Вт;
    • компактного переменного резистора (уровень сопротивления примерно 500 кОм);
    • проводов для соединения с основной схемой.

    Самодельная схема регулятора яркости

    Собранное устройство последовательно устанавливают в нулевую фазу провода, идущего к светильнику. Симистор пропускает ток только при определенной разности потенциалов.

    Накопление заряда идет на конденсаторе, который подключен к симистору. При этом скорость заряда определяется уровнем сопротивления переменного резистора. Сам же уровень этого сопротивления задается пользователем.

    Чем меньше сопротивление переменного резистора, тем ярче горит лампа.

    Достоинством данного самодельного устройства является то, что при работе не происходит падения уровня напряжения, и освещенность не страдает.

    С другой стороны, плавный пуск галогенной лампы достигается за счет механического поворота симистора, отрегулировать скорость которого сложно.

    Точные параметры можно задать только на современных автоматических приборах, собрать которые своими руками сложнее.

    При выборе диммерного устройства для плавного включения лампы накаливания необходимо учесть, что некоторые виды оборудования начинают работу с минимального значения, когда нить накаливания слегка тлеет. Другие сразу дают существенный скачок, который также приводит к большому перепаду напряжения на лампе.

    Использование диммера может привести к повышению уровня магнитострикции и появлению высокочастотного свиста или шума, идущего от лампы накаливания. Это явление характерно для мощных ламп накаливания. Если светильники работают без диммера, то дополнительного звука практически неслышно.

    Микросхемы для фазового регулирования

    В радиотехнике разработаны специальные микросхемы, основной задачей которых является фазовое регулирование различных параметров. Одна из таких радиокомпонент – это микросхема КР1182ПМ1.

    Она служит для плавного запуска ламп накаливания. Причем эта микросхема обеспечивает не только включение, но и плавное выключение прибора. КР1182ПМ1 рассчитана на ток до 150 Вт и имеет несколько выводов:

    • 2 силовых – для последовательного подключения в цепь с нагрузкой;
    • 2 вспомогательных;
    • 2 для регулировочного резистора и других радиокомпонент для управления.

    Схема плавного включения ламп накаливания на КР1182ПМ1

    КР1182ПМ1 включается в цепь следующим образом.

    При размыкании выключателя S конденсатор С3 начинает плавно заряжаться до значения, которое определяется показателями резистора R2 и уровнем входного тока управляемого преобразователя напряжения в ток (УПНТ) в микросхеме.

    Выходной ток на УПНТ также плавно растет, а задержка включения тиристоров падает. Таким образом, лампочки включаются постепенно. При замыкании ключа C3 разрядится через R2, и этот процесс также будет происходить плавно.

    Плавное включение позволит избежать выхода из строя и маломощных ламп накаливания, ведь проблемы с перегоранием не связаны с уровнем мощности. Даже если в устройстве подключения лампочки на 12В установлены через понижающий трансформатор, без плавного пуска лампа быстрее выйдет из строя.

    Видео

    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

    Adblock
    detector