Блок питания с гасящим конденсатором

Как рассчитать емкость гасящего конденсатора простого блока питания

Блок питания с гасящим конденсатором

Блок питания с гасящим конденсатором представляет собой простейший вариант запитать какое нибудь маломощное устройство.При всей своей простоте он имеет и два минуса:1.

Он гальванически связан с сетью! потому такие БП используются там, где нет вероятности прикосновения к контактам.2. Такой Бп имеет не очень большой выходной ток.

При увеличении выходного тока надо увеличивать емкость гасящего конденсатора и его габариты становятся существенными.

Внимание, будьте очень аккуратны, не прикасайтесь к контактам этого БП когда он включен.

Простейшая схема данного БП выглядит так:Как можно увидеть из схемы, последовательно с сетью стоит конденсатор. Он то и является балластом,, на котором гасится часть напряжения.Конденсатор не пропускает постоянный ток, но так как в сети переменный и конденсатор в итоге постоянно перезаряжется, то и получается, что в таком случае ток на выходе есть.

Причем сила тока напрямую зависит от емкости конденсатора.Собственно потому для расчета емкости конденсатора необходимо знать как минимум выходной ток нашего будущего БП, причем надо учесть и потребление стабилизатора, обычно это несколько мА.И так. Есть две формулы, сложная и простая.Сложная – подходит для расчета при произвольном выходном напряжении.

Простая – подходит в ситуациях, когда выходное напряжение не более 10% от входного. I – выходной ток нашего БПUвх – напряжение сети, например 220 ВольтUвых – напряжение на выходе БП (или до стабилизаторе если такой есть), например 12 Вольт.С – собственно искомая емкость.Например я хочу сделать БП с выходным током до 150мА.

Пример схемы приведен выше, вариант применения – радиопульт с питанием 5 Вольт + реле на 12 Вольт.Подставляем наши 0.15 Ампера и получаем емкость 2.18мкФ, можно взять ближайший номинал из стандартных – 2,2мкФ, ну или “по импортному” – 225.Все как бы вроде хорошо, схема простая, но есть несколько минусов, которые надо исключить:1.

Бросок тока при включении может сжечь диодный мост.2. При выходе из строя конденсатора может быть КЗ3. Если оставить как есть, то вполне можно получить разряд от входного конденсатора, так как на нем может долго присутствовать напряжение даже после отключения БП от сети.4. При снятии нагрузки напряжение на конденсаторе до стабилизатора поднимется до довольно большого значения.

Решения:1. Резистор R1 последовательно с конденсатором2. Предохранитель 0.5 Ампера.3. Резистор R2 параллельно конденсатору.4. Супрессор на 12 Вольт параллельно конденсатору после диодного моста. Я не рекомендую здесь использовать стабилитроны, супрессоры рассчитаны на большую мощность рассеивания и схема будет работать надежнее.

На схеме красным цветом я выделил новые компоненты, синим – небольшое дополнение в виде светодиода.Но гасящие конденсаторы используют часто и в дешевых светодиодных лампах. Это плохо, так как у таких ламп меньше надежность и часто высокие пульсации света.Ниже упрощенный вариант схемы такой лампы.

Попробуем рассчитать емкость для такого применения, но так как напряжение на выходе будет явно больше чем 1/10 от входного, то применим первую формулу.В качестве выходного напряжения я заложил 48 Вольт, 16 светодиодов по 3 Вольта на каждом. Конечно это все условно, но близко к реальности.Ток – 20мА, типичный максимальный ток для большинства индикаторных светодиодов.

У меня вышло, что необходим конденсатор емкостью 0.298 мкФ. Ближайший из распространенных номиналов – 0.27 или 0.33мкФ. Первый встречается гораздо реже, а второй уже будет давать превышение тока, потому можно составить конденсатор из двух параллельных, например по 0.15мкФ. При параллельном включении емкость складывается.С емкостью разобрались, осталось еще пара моментов:1.

Напряжение конденсатора2. Тип конденсатора.С напряжением все просто, можно применить конденсатор на 400 Вольт, но надежнее на 630, хоть они и имеют больше размер.С типом чуть сложнее.

Для такого применения лучше использовать конденсаторы, которые изначально предназначены для такого использования, например К73-17, CL21, X2На фото конденсатор CL21А это более надежный вариант, не смотрите что на нем указано 280 Вольт, у него это значение переменного действующего напряжения и он будет работать надежнее, чем К73-17 или CL21.

Такие конденсаторы могут выглядеть и такА вот теперь можно еще раз внимательно посмотреть, что надо для того, чтобы собрать такой “простой” блок питания и решить, нужен ли он.В некоторых ситуациях да, он поможет, но он имеет кучу минусов, потому на мой взгляд лучше применить просто небольшой импульсный блок питания, который уже имеет стабилизированное выходное напряжение, гальваническую изоляцию и больший выходной ток.

Как пример таких блоков питания я могу дать ссылку на подробный обзор четырех вариантов, с тестами, схемами и осмотров.

Но можно поступить еще лучше. Сейчас получили распространение монолитные блоки питания. По сути кубик, в котором находится миниатюрный БП

Например HLK-PM01 производства Hi-link, стоимостью около двух долларов за штуку.

Или их китайский аналог TSP-05 производства Tenstar robot. Они немного дешевле, 1.93 доллара за штуку.

Практика показала, что качество у них сопоставимое.Как я писал выше, они представляют из себя импульсный Бп в модульном исполнении. БП в пластмассовом корпусе залитый эпоксидной смолой.

Выпускаются на разные напряжения и способны поддерживать его на довольно стабильном уровне.Внутренности поближе, на фото вариант от Hi-link

На этом вроде все. Надеюсь, что статья была полезна, постараюсь и в будущем находить интересные темы.

Также интересны пожелания, что хотелось бы видеть в рубрике – Начинающим.

Эту страницу нашли, когда искали:
применение конденсатора в светодиодной, расчёт rc цепи lkz gbnfybz jn ctnb, добавить конденсатор на выход dc dc, сборка емкость 0,47мф и сопротивление 600 ком на входе источника питания, расчёт тока потребления светодиодов соединённых последовательно с балластным конденсатором, какой конденсатор нужен для 12 вольт после диодного моста, простой трансформатор с гасящим конденсатором, расчет мощности импульса блока питания к сглаживающим конденсатором, расчет емкости конденсатора для трансформаторного блока питания, расчет падение напряжения для балластного конденсатора, емкость конденсатора для трансформатора на 12вольт, зачем в сети 220 вольт параллельно сетевому конденсатору ставят резистор, расчёт сопротивления ёмкостного фильтра при постоянном токе, как подобрать гасящий резистор диодного моста, соотношение конденсаторов к мощности ипульсного бп, расчет конденсатора для светодиода при 12в, гасящий конденсатор в цепи переменного тока формула, расчет схема с гасящим конденсатором, как сделать прерыватель на 12в рассчитать емкость конденсатора для, емкость сглаживающего конденсатора от тока, как выбирать фильтрующий конденсатор для блока питания, расчет конденсаторов для переменного тока, понижение напряжения с помощью конденсатора калькулятор, конденсатор x2 для светодиодных ламп, вспух конденсатор 400v

Конденсаторное питание

Блок питания с гасящим конденсатором

Что то часто меня стали спрашивать как подключить микроконтроллер или какую низковольтную схему напрямую в 220 не используя трансформатор.

Желание вполне очевидное — трансформатор, пусть даже и импульсный, весьма громоздок. И запихать его, например, в схему управления люстрой размещенной прям в выключателе не получится при всем желании.

Разве что нишу в стене выдолбить, но это же не наш метод!

Тем не менее простое и очень компактное решение есть — это делитель на конденсаторе.

Помните обычный резистивный делитель?

Казалось бы, в чем проблема, выбрал нужные номиналы и получил искомое напряжение. Потом выпрямил и Profit. Но не все так просто — такой делитель может и сможет дать нужное напряжение, но вот совершенно не даст нужный ток. Т.к.

сопротивления сильно велики.

А если сопротивления пропорционально уменьшать, то через них насквозь пойдет большой ток, что при напряжении в 220 вольт даст очень большие тепловые потери — резисторы будут греть как печка и в итоге либо выйдут из строя, либо пожар устроят.

Все меняется если один из резисторов заменить на конденсатор. Суть в чем — как вы помните из статьи про конденсаторы, напряжение и ток на конденсаторе не совпадают по фазе. Т.е. когда напряжение в максимуме — ток минимален, и наоборот.

Так как у нас напряжение переменное, то конденсатор будет постоянно разряжаться и заряжаться, а особенность разряда-заряда конденсатора в том, что когда у него максимальный ток (в момент заряда), то минимальное напряжение и наборот.

Когда он уже зарядился и напруга на нем максимальная, то ток равен нулю. Соответственно, при таком раскладе, мощность тепловых потерь, выделяемая на конденсаторе (P=U*I) будет минимальной. Т.е. он даже не вспотеет.

А рективное сопротивление конденсатора Xc=-1/(2pi*f*C).

Теоретическое отступлениеВ цепи бывают три вида сопротивлений:

Активное — резистор (R)
Реактивное — конденсатор (Xс) и катушка(XL)
Полное же сопротивление цепи (импенданс) Z=(R2+(XL+Xс)2)1/2

Да, чистые активные и реактивные элементы бывают только в теории. Например, у катушки есть индуктивное сопротивление — витки, активное сопротивление — сопротивление проволки и емкостное сопротивление — паразитные конденсаторы образующиеся между витками катушки.
Даже обычный проводник имеет какую то паразитную емкость и индуктивность.

Активное сопротивление всегда постоянно, а реактивное зависит от частоты.
XL=2pi*f * L Xc=-1/(2pi*f*C)

Знак реактивного сопротивления элемента указывает на его характер. Т.е. если больше нуля, то это индуктивные свойства, если меньше нуля то емкостные. Из этого следует, что индуктивность можно скомпенсировать емкостью и наоборот.

f — частота тока.

Соответственно, на постоянном токе при f=0 и XL катушки становится равен 0 и катушка превращается в обычный кусок провода с одним лишь активным сопротивлением, а Xc конденсатора при этом уходит в бесконечность, превращая его в обрыв.

Эта зависимость от частоты также показывает почему в высокочастотных устройствах простые, казалось бы, дорожки печатной платы начинают вести себя как детали — а просто из за возросшей частоты их паразитные значения реактивных сопротивлений возрастают до ощутимых величин.

Получается у нас вот такая вот схема:

Теперь надо что-то сделать с тем, что у нас переменка. Не велика проблема — добавим парочку диодов (можно, конечно, и диодный мост, будет эффективней, но с двумя диодами проще) диоды должны быть на ток около ампера, не меньше. И чтобы обратное напряжение было вольт на 500. 1N4007, например, или похожий по параметрам:

Все, в одну сторону ток течет через один диод, в другую через второй. В итоге, в правой части цепи у нас уже не переменка, а пульсирующий ток — одна полуволна синусоиды.

Добавим сглаживающий конденсатор, чтобы сделать напряжение поспокойней, микрофарад на 100 и вольт на 25, электролит:

Но есть тут одна заковыка — у нас напряжение на нагрузке зависит от сопротивления нагрузки. Т.е. если у тебя схема, включенная вместо Rн снизила потребление тока, то соответственно напряжение на ней вырастет. А для всякой нежной электроники это черевато.

Лечится стабилитроном на нужное нам напряжение. Питать мы собираемся микроконтроллер, так что на 5 вольт:

В принципе уже готово, единственно что надо поставить стабилитрон на такой ток, чтобы он не сдох когда нагрузки нет вообще, ведь тогда отдуваться за всех придется ему, протаскивая весь ток который может дать БП.

А можно ему помочь слегонца. Поставить резистор токоограничительный. Правда это сильно снизит нагрузочную способность блока питания, но нам хватит и этого.

Ток который эта схема может отдать можно, ЕМНИП, примерно вычислить по формуле:

  • F — частота питающей сети. У нас 50гц.
  • С — емкость
  • U — напряжение в розетке
  • Uвых — выходное напряжение

Сама формула выводится из жутких интегралов от формы тока и напряжения. В принципе можешь сам ее нагуглить по кейворду «гасящий конденсатор расчет», материала предостаточно.

В нашем случае получается что I = 100 * 0.46E-6 (1.41*U — Uвых/2) = 15мА

Не феерия, но для работы МК+TSOP+оптоинтерфейс какой- нибудь более чем достаточно. А большего обычно и не требуется.

Еще добавить парочку кондеров для дополнительной фильтрации питания и можно использовать:

Еще добавил резюк на 43ом 1Вт, чтобы кондер при втыкании кондер заряжался не так быстро и не было броска тока. На печатке он здоровый такой, возле разьема.

Печатная плата простая и вопросов по ее разводке под другую форму корпуса ни у кого не возникнет. Я же ее тут сделал просто для примера, поэтому не смотрите на ее большие размеры. Я не мельчил:

Как всегда, прикладываю LAY файл.

После чего, как обычно, все вытравил и спаял:

Схема многократно проверена и работает. Я ее когда то пихал в систему управления нагревом термостекла. Места там было со спичечный коробок, а безопасность гарантировалась тотальной остекловкой всего блока.

В данной схеме нет никакой развязки по напряжению от питающей цепи, а значит схема ОЧЕНЬ ОПАСНА в плане электрической безопасности.

Поэтому надо крайне ответственно подходить к ее монтажу и выбору компонентов. А также внимательно и очень осторожно обращаться с ней при наладке.

Во первых, обратите внимание, что один из выводов идет к GND напрямую из розетки. А это значит что там может быть фаза, в зависимости от того как воткнули вилку в розетку.

Поэтому неукоснительно соблюдайте ряд правил:

В общем, я настоятельно НЕ РЕКОМЕНДУЮ пользоваться такой схемой включения. И если можно от нее избавиться, то от нее нужно избавиться. Перейдя на традиционные схемы блоков питания с развязкой от сети.

Ну и, как обычно, видеосьемка процесса запуска девайса от розетки через такой вот БП:

Offtop:
Для троллей я заготовил много вкусной еды — энджой!

Блок питания с гасящим конденсатором

Блок питания с гасящим конденсатором

Вполне естественно, что, как перед начинающим, так и перед опытным радиолюбителем, возникает проблема отсутствия блока питания. В самом примитивном случае эту задачу можно решить, применив схему с гасящим конденсатором. В нашей статье рассмотрено именно использование реактивного сопротивления для получения желаемого напряжения, и приведены некоторые советы по его расчёту.

Блок питания с гасящим конденсатором:

Выбирая схему источника питания, следует  учесть множество факторов. А именно безопасность изделия, массогабаритные размеры и конструктивные особенности,  условия эксплуатации, электрические характеристики, и многое другое.

Вначале вам необходимо обратить ваш взор на: напряжение питания; потребляемый ток; стабильность вашего источника питания, и пульсацию сигнала; рассеиваемую мощность.

Схема блока питания с гасящим конденсатором:

Если по каким-то причинам для понижения напряжения вы не можете использовать трансформатор, то рекомендую вам взять на вооружение схему с гасящим конденсатором рисунок №1

Рисунок №1 – Схема включения гасящего конденсатора

В данной схеме конденсатор С* является реактивным сопротивлением понижающим выходное напряжение для требуемого уровня и рассчитывается по формуле №1.

(Формула №1)

I – потребляемый ток в А;

Uс – напряжение сети (220 В);

UВ – напряжение питания устройства (выходное напряжение);

Если необходимое вам выходное напряжение питания 10−20 вольт или менее, то емкость гасящего конденсатора можно определить по упрощенной формуле №2:

(Формула №2)

Номинальное напряжение (на которое рассчитан конденсатор С*) должно быть в 2−3 раза больше напряжения сети питания.

На пример, для сети питания 220 В, номинальное напряжения конденсатора С* должно быть минимум 400 В.

Паралельно включённое спротивление R1 служит для разрядки конденсатора после отключения его от сети. R1 по мощности должен соответствовать потребляемой мощности вашей схемы (должен соответствовать рмощности рассеиваемой нагрузкой).

Такая схема згодится для понижения напряжения, что вы подключите на её выход это ваша воля, главное соблюдайте правила электрической безопасности и грамотно подбирайте элементы проэктируемой схемы.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт http://bip-mip.com/

13. Сетевой источник питания с гасящим конденсатором

Блок питания с гасящим конденсатором

СЕТЕВОЙ ИСТОЧНИК ПИТАНИЯ С ГАСЯЩИМ КОНДЕНСАТОРОМ

Во многих из описанных выше устройств использовались бестрансформаторные источники питания с гасящим конденсатором. Они удобны своей простотой, малыми габаритами и массой, но не всегда применимы из-за гальванической связи выходной цепи с сетью 220 В. О том, как правильно рассчитать такой источник, рассказывается в данном разделе.

В бестрансформаторном источнике питания к сети переменного напряжения подключены последовательно соединенные конденсатор и нагрузка. Рассмотрим вначале работу источника с чисто резистивной нагрузкой (рис. 123,а).

В радиолюбительской практике часто используют источник, в котором гасящий конденсатор включен в сеть последовательно с

диодным мостом, а нагрузка, зашунтированная другим конденсатором, питается от выходной диагонали моста (рис. 124). В этом случае цепь становится резко нелинейной и форма тока, протекающего через мост и гасящий конденсатор, будет отличаться от

синусоидальной. Из-за этого представленный выше расчет оказывается неверным.

Каковы процессы, происходящие в источнике со сглаживающим конденсатором С2 емкостью, достаточной для того, чтобы считать пульсации выходного напряжения пренебрежимо малыми? Для гасящего конденсатора С1 диодный мост (вместе с С2 и Rн) в установившемся режиме представляет собой некий эквивалент симметричного стабилитрона. При напряжении на этом эквиваленте, меньшем некоторого значения (оно практически равно напряжению Uвых на конденсаторе С2), мост закрыт и ток через него не проходит, при большем – через открытый мост течет ток, не давая увеличиваться напряжению на входе моста.

Рассмотрение начнем с момента t1, когда напряжение сети максимально (рис. 125). Конденсатор С1 заряжен до амплитудного напряжения сети Uс.амп за вычетом напряжения на диодном мосте Uм , примерно равного Uвых.

Ток через конденсатор С1 и закрытый мост равен нулю. Напряжение в сети уменьшается по косинусоидальному закону (график 1), на мосте также уменьшается (график 2), а напряжение на конденсаторе С1 не меняется.

Ток конденсатора останется нулевым до тех пор, пока напряжение на диодном мосте, сменив знак на противоположный, не достигнет значения -Uвых (момент t2).

В этот момент появится скачком ток Ic1 через конденсатор С1 и мост.

Начиная с момента t2, напряжение на мосте не меняется, а ток определяется скоростью изменения напряжения сети и, следовательно, будет точно таким же, как если бы к сети был подключен только конденсатор С1 (график 3).

Когда напряжение сети достигнет отрицательного амплитудного значения (момент tз), ток через конденсатор С1 снова станет равным нулю. Далее процесс повторяется каждый полупериод.

Ток через мост протекает лишь в интервале времени t2-t3, его среднее значение может быть рассчитано как площадь заштрихованной части

При отсутствии стабилитрона на необходимое напряжение Uвых;

допускающего рассчитанный максимальный ток стабилизации, можно соединить несколько стабилитронов на меньшее напряжение последовательно.

Подставлять в формулу (4) минимальный ток нагрузки Iн nun следует лишь тогда, когда этот ток длителен – единицы секунд и более. При кратковременном минимальном токе нагрузки (доли секунды) его надо заменить средним (по времени) током нагрузки. Если стабилитрон допускает ток, больший рассчитанного по формуле (4), целесообразно использовать гасящий конденсатор несколько

источника по схеме рис. 124 зарядка этого конденсатора длится четверть периода напряжения сети, и столько же – разрядка. При таком приближении двойное напряжение пульсации 2Uп (размах ) равно: 2ип=0,25Iн mах/fС.

Аналогично можно считать, что для источника по схеме рис. 126 зарядка длится то же время, а разрядка – три четверти периода:

2Uп=0,75Iнmax/fC.

Для выходного напряжения менее 100 В реально зарядка длится большее время, разрядка – меньшее, и эти выражения дают заметно завышенный результат, поэтому расчет емкости сглаживающего конденсатора по полученным из них формулам обеспечивает некоторый запас: С=5Iнmax/2Uп (для рис. 124); С= 15Iнmax/2Uп (для рис. 126), где ток – в миллиамперах, емкость – в микрофарадах, напряжение – в вольтах.

Хотя стабилитрон и уменьшает напряжение пульсации, использовать сглаживающий конденсатор емкостью, менее рассчитанной, не рекомендуется. В ранее рассмотренном примере при размахе пульсации 0,2 В емкость сглаживающего конденсатора равна:

С2=5*15/0,2=375 мкФ.

Для ограничения броска тока через диоды выпрямительного моста в момент включения источника в сеть последовательно с гасящим конденсатором необходимо включать токоограничивающий резистор. Чем меньше сопротивление этого резистора, тем меньше потери в нем. Для диодного моста КЦ407А или моста из диодов КД103А достаточно резистора сопротивлением 36 Ом.

Рассеиваемую на нем среднюю мощность Р можно определить по формуле: Р= 5,6С1^2R, где емкость – в микрофарадах, сопротивление -в омах, мощность – в милливаттах. Для рассмотренного выше примера P=5,6*0,39^236=30 мВт. Для надежности (ведь в момент включения к резистору может быть приложено амплитудное напряжение сети) рекомендуется использовать резистор мощностью не менее 0,5 Вт.

Для того, чтобы исключить возможность поражения электротоком при налаживании устройств с рассматриваемыми источниками, питать их следует не от сети, а от сетевого лабораторного низковольтного блока питания через токоограничительный резистор. Выходное напряжение лабораторного блока устанавливают больше напряжения питания налаживаемого устройства настолько, чтобы ток через токоограничительный резистор был близок к Iст min+ Iнmax.

Иногда удобно использовать в роли токоограничительного резистор источника, ограничивающий бросок тока через диоды выпрямительного моста. В этом случае достаточно замкнуть выводы

(рис. 130) на ток нагрузки до 0,3 А и источник бесперебойного питания для электронно-механических часов (рис. 131).

Делитель напряжения пятивольтового источника состоит из бумажного конденсатора С1 и двух оксидных С2 и СЗ, образующих нижнее по схеме неполярное плечо емкостью 100 мкф. Поляризующими диодами для оксидной пары служат левые по схеме диоды моста. При номиналах элементов, указанных на схеме, ток замыкания (при Rн=O) равен 600 мА, напряжение на конденсаторе С4 в отсутствие нагрузки – 27 В.

Электронно-механические часы обычно питают от одного гальва

нического элемента напряжением 1,5 В. Предлагаемый источник вырабатывает напряжение 1,4 В при среднем токе нагрузки 1 мА. Напряжение, снятое с делителя С1С2, выпрямляет узел на элементах VD1, VD2, СЗ. Без нагрузки напряжение на конденсаторе СЗ не превышает 12 В.

Транзистор VT1, включенный эмиттерным повторителем, и гальванический элемент G1 составляют стабилизатор напряжения. На выходе источника будет напряжение элемента минус падение напряжения на эмиттерном переходе транзистора.

Ток, потребляемый от элемента G1 при наличии сетевого напряжения, меньше тока нагрузки в h21э раз, что существенно продлевает срок службы элемента. Практически это означает, что элемент приходится заменять не из-за его разрядки током нагрузки, а вследствие других причин – саморазрядки, высыхания электролита и т. п.

В случае пропадания напряжения в сети транзистор выходит из режима эмиттерного повторителя и нагрузку питает гальванический .элемент G1 через открытый эмиттерный переход. После появления сетевого напряжения транзистор возвращается в режим эмиттерного повторителя и нагрузка переходит на питание от сети. Конденсатор С4 обеспечивает нормальную работу часов при глубокой разрядке элемента G1.

Диоды Д223 можно заменить на любые другие, транзистор МП41А – на любой германиевый структуры р-n-р. Элемент G1

лучше использовать алкалиновый, например, Duracell, Energizer. Реальный срок эксплуатации такого элемента в блоке питания может достигать 10 лет.

И последнее. Конструкция бестрансформаторных источников и устройств, питающихся от них, должна исключать возможность прикосновения к любым проводникам в процессе эксплуатации. Особое внимание нужно уделить изоляции органов управления.

Бестрансформаторные сетевые источники питания с гасящим конденсатором

Блок питания с гасящим конденсатором

Автор: Лупенко Александр

Несколько схем и расчет бестрансформаторных блоков питания с гасящим конденсатором

Сетевой источник питания с гасящим конденсатором (рис. 1), по сути, есть делитель напряжения, у которого верхнее плечо – конденсатор, а нижнее представляет собой сложную нелинейную диодно-резисторно-конденсаторную цепь. Этим и определены недостатки (и достоинства, конечно) таких устройств.

Рисунок 1:

Для того чтобы источник мог работать в широком интервале тока нагрузки с высоким КПД, достаточно входной делитель напряжения выполнить чисто реактивным, например, конденсаторным (рис. 2).

Рисунок 2:

Он позволяет дополнительно стабилизировать выходное напряжение источника последовательно включенным компенсационным или импульсным стабилизатором, чего нельзя делать в обычном источнике с гасящим конденсатором. Как показано в статье С.

Бирюкова “Расчет сетевого источника питания с гасящим конденсатором” – “Радио”, 1997, N 5, с.

48-50, – последовательный стабилизатор можно использовать только при ограничении напряжения на его входе, что опять-таки заметно снижает КПД.

Ток, потребляемый конденсаторным делителем, будет иметь фазовый сдвиг в 90 град. относительно напряжения сети, поэтому делитель напряжения на реактивных элементах не требует охлаждения.

Исходя из вышесказанного, ток через делитель вроде бы можно выбрать сколь угодно большим. Однако неоправданное увеличение тока делителя приведет к активным потерям в проводах и к увеличению массы и объема устройства.

Поэтому целесообразно принять ток через делитель напряжения в пределах 0,5…3 от максимального тока нагрузки.

Расчет источника с емкостным делителем несложен. Как следует из ф-лы (2) в упомянутой статье, выходное напряжение Uвых и полный выходной ток (стабилитрона и нагрузки Iвых) источника по схеме 1,а связаны следующим образом:

Iвых = 4fC1(2Uc-Uвых)

Эта формула пригодна и для расчета источника с конденсаторным делителем, в ней просто надо заменить С1 на суммарную емкость параллельно соединенных конденсаторов С1 и С2, показанных на рис. 2. a Uc – на Uc2x (напряжение на конденсаторе С2 при RH = °°), т. е.

Uc2x = Uc-C1/(C1+C2)

Тогда
Iвых = 4f(C1+C2)x x[Uc-C1-i/2/(C1+C2)-Unbix] или после очевидных преобразований

Iвых = 4f-C1 [Uc^2 -ивых(1+С2/С1)].

Бестрансформаторный блок питания с конденсаторным делителем + online-калькулятор

Блок питания с гасящим конденсатором

Итак, начнём, с того, зачем вообще нужен такой блок питания. А нужен он затем, что позволяет запитать слаботочные нагрузки не заморачиваясь с намоткой трансформаторов и используя минимум компонентов.

Минимальное число компонентов (и тем более отсутствие таких габаритных компонентов как трансформатор), в свою очередь, делают блок питания с конденсаторным делителем (иногда говорят “с емкостным делителем”) простым и исключительно компактным.

Рассмотрим схему, изображённую на рисунке:

Здесь Z1 = -j/wC1; Z2 = -j/wC2 — реактивные сопротивления конденсаторов

Найдём ток нагрузки: iн = i1-i2 (1) — первый закон Кирхгофа для узла 1.

Учитывая, что по закону Ома для участка цепи: i1=u1/Z1, а u1=uc-u2;

выражение (1) можно переписать в следующем виде:

iн=(uc-u2)/Z1-u2/Z2 ;

или по другому: Iн=jwC1(Uсм-U)-jwC2U2м , где индекс “м” — это сокращение от слова максимальный, он говорит о том, что речь идёт об амплитудных значениях.

Раскрыв скобки и сгруппировав это выражение, получим:

Iн=jwC1(Uсм-U(121)) (2) — вот, собственно, мы и получили выражение для тока через нагрузку Zн, в зависимости от напряжения на этой нагрузке и напряжения питающей сети. Из формулы (2) следует, что амплитудное значение тока равно: Iнм=wC1(Uсм-U(121)) (3)

Предположим, что наша нагрузка — это мост, сглаживающий конденсатор и, собственно, полезная нагрузка (смотрим рисунок).

При начальном включении, когда конденсатор C3 разряжен, величина U2 будет равна нулю и через мост потечёт пусковой зарядный ток, максимальное начальное значение которого можно найти, подставив в формулу (3) величину U2м равную нулю (Iпуск=wC1Ucм). Это значение соответствует худшему случаю, когда в момент включения мгновенное значение напряжения в сети было равно максимальному значению.

С каждым полупериодом конденсатор C3 будет заряжаться и наше напряжение U2м, равное по модулю напряжению на конденсаторе C3 и напряжению на полезной нагрузке (обозначим его как Uвых), также будет расти, пока не вырастет до некоторого постоянного значения. При этом ток через полезную нагрузку будет равен средневыпрямленному току, т.е. Iвых=Iнм*2/”Пи” (для синусоидального входного тока).

Учитывая также, что Ucм=Uc*1,414 (Uc — действующее значение питающего напряжения), а w=2*”Пи”*f, где f-частота питающего напряжения в герцах, получим:

Iвых = 4fC1(1,414Uc-Uвых(1+C2/C1)), если ещё к тому же учесть падение на диодах моста, то окончательно получится:

Iвых = 4fC1(1,414Uc-(Uвых+2Uд)(1+C2/C1)) (4) , где — падение на одном диоде

Из этого выражения можно получить и обратную зависимость Uвых(Iвых):

Uвых=(1,414Uc-Iвых/4fC1)/(1+C2/C1)-2 (5)

Что видно из двух последних формул? Из них видно, что с увеличением потребляемого нагрузкой тока напряжение на нагрузке уменьшается, а с уменьшением потребляемого тока — оно растёт.

Разомкнув цепь нагрузки (то есть приняв ток нагрузки равным нулю) найдём напряжение холостого хода: Uвых хх = 1,414Uc/(1+C2/C1)-2 (6).

Очевидно, что мост и конденсатор C2 должны быть рассчитаны на напряжение не менее U2м макс = Uвых хх + 2Uд = 1,414Uc/(1+C2/C1).

Строго говоря наши расчёты не совсем безупречны, потому что реальные процессы тут вообще будут нелинейными, но наши небольшие упрощения сильно облегчают расчеты и не сильно влияют на конечный результат.

А вот теперь самое интересное. Частенько читал в интернете, что линейные стабилизаторы не работают в таких схемах, сгорают и прочее и прочее. Ну что же, давайте ещё раз перерисуем нашу схему, добавив в неё линейный стабилизатор напряжения (смотрите рисунок).

(Uст. , — напряжение и ток нагрузки).

Здесь наше Uвых (напряжение на конденсаторе C3) является входным напряжением стабилизатора (Uin). Как мы помним, при отсутствии нагрузки напряжение на выходе будет максимально и равно Uвых хх.

Так что вполне очевидно, что для нормальной работы наш линейный стабилизатор должен выдерживать входное напряжение не менее Uвых хх.

Или можно сказать по другому, — конденсаторы должны быть подобраны таким образом, чтобы выходное напряжение холостого хода (имеется ввиду выходное напряжение конденсаторного делителя) не спалило стабилизатор при случайном отключении нагрузки (мало ли, неконтакт какой-нибудь).

Максимальный ток нагрузки можно определить, подставив в формулу (4) вместо Uвых минимальное входное напряжение стабилизатора. Как видите, главное — всё правильно рассчитать, тогда и стабилизатору ничто не угрожает.

Эта схема уже вполне рабочая, но есть у неё один существенный недостаток.

В случае, когда нам нужно получить входное напряжение стабилизатора существенно ниже питающего напряжения сети (при питании от 220 В нам именно это и нужно), ёмкость конденсатора C2 получается довольно значительной.

А неполярный конденсатор значительной ёмкости — довольно дорогое удовольствие (да и габариты не радуют). Можно ли как-то вместо неполярного конденсатора использовать, например, обычные электролитические?

Оказывается можно. Для этого переделаем нашу схему ещё раз, таким образом, как на рисунке. В данной схеме вместо одного конденсатора С2 используются два конденсатора С2 и С2‘ (такой же ёмкости, как и в случае, когда конденсатор C2 всего один), развязанные через диоды моста. При этом обратное напряжение на каждом из этих конденсаторов не превышает падения напряжения на диоде.

Несмотря на то, что в данном случае вместо одного неполярного конденсатора используется два электролитических, такая схема получается экономичнее и по деньгам и по габаритам.

Правда тут есть один нюанс. Выгорание одного из диодов моста может привести к тому, что на электролитических конденсаторах всё-таки появится полное обратное напряжение. Если такое произойдёт — конденсатор вероятнее всего взорвётся.

Ещё хотелось бы отметить, что обращаться с бестранформаторными блоками питания следует крайне осторожно, поскольку такая схема не развязана от питающей сети и прикосновение к её токопроводящим частям может вызвать серьёзное поражение электрическим током.

Online-калькулятор для расчёта блока питания с конденсаторным делителем:

(для правильности расчётов используйте в качестве десятичной точки точку, а не запятую)

1) Исходные данные:

(если вы не знаете минимального входного напряжения стабилизатора и величину падения напряжения на диодах моста, то расчёт будет сделан для: Uin=Uст и Uд=0, — как будто минимальное входное напряжение равно выходному напряжению стабилизатора и диоды идеальные).

2) Расчётные данные:

Для примера: при C1=1мкФ, С2 (или С2 и С2‘)=22мкФ, Uc=220В, f=50Гц и стабилизаторе LM7805, — можно получить максимальный ток нагрузки порядка 30-35мА, что вполне позволяет запитывать, например, контроллеры, оптосимисторы и даже некоторые релюшки. При этом напряжение на LM-ке даже в худшем случае (без нагрузки) не превысит 13,5 вольт.

Пример использования (в устройстве управления освещением)

Расчет конденсатора для светодиодов

Блок питания с гасящим конденсатором

Необходимость подключить светодиод к сети – частая ситуация. Это и индикатор включения приборов, и выключатель с подсветкой, и даже диодная лампа.

Существует множество схем подключения маломощных индикаторных LED через резисторный ограничитель тока, но такая схема подключения имеет определённые недостатки. При необходимости подключить диод, с номинальным током 100-150мА, потребуется очень мощный резистор, размеры которого будут значительно больше самого диода.

Вот так бы выглядела схема подключения настольной светодиодной лампы. А мощные десяти ваттные резисторы при низкой температуре в помещении можно было бы использовать в качестве дополнительного источника отопления.

Применение в качестве ограничителя тока конде-ров позволяет значительно уменьшить габариты такой схемы. Так выглядит блок питания диодной лампы мощностью 10-15 Вт.

Принцип работы схем на балластном конденсаторе

В этой схеме конде-р является фильтром тока. Напряжение на нагрузку поступает только до момента полного заряда конде-ра, время которого зависит от его ёмкости. При этом никакого тепловыделения не происходит, что снимает ограничения с мощности нагрузки.

Чтобы понять, как работает эта схема и принцип подбора балластного элемента для LED, напомню, что напряжение – скорость движения электронов по проводнику, сила тока – плотность электронов.

Для диода абсолютно безразлично, с какой скоростью через него будут «пролетать» электроны. Расчет конде-ра основан на ограничении тока в цепи. Мы можем подать хоть десять киловольт, но если сила тока составит несколько микр оампер, количества электронов, проходящих через светоизлучающий кристалл, хватит для возбуждения лишь крохотной части светоизлучателя и свечения мы не увидим.

В то же время при напряжении несколько вольт и силе тока десятки ампер плотность потока электронов значительно превысит пропускную способность матрицы диода, преобразовав излишки в тепловую энергию, и наш LED элемент попросту испарится в облачке дыма.

Расчет гасящего конденсатора для светодиода

Разберем подробный расчет, ниже сможете найти форму онлайн калькулятора.

Расчет емкости конденсатора для светодиода:

С(мкФ) = 3200 * Iсд) / √(Uвх² — Uвых²)

С мкФ – ёмкость конде-ра. Он должен быть рассчитан на 400-500В;
Iсд – номинальный ток диода (смотрим в паспортных данных);
Uвх – амплитудное напряжение сети  — 320В;
Uвых – номинальное напряжение питания LED.

Можно встретить еще такую формулу:

C = (4,45 * I) / (U — Uд)

Она используется для маломощных нагрузок до 100 мА и до 5В.

Расчет конденсатора для светодиода (калькулятор онлайн):

Для наглядности проведём расчёт нескольких схем подключения.

Подключение одного светодиода

Для расчета емкости конде-ра нам понадобится:

  • Максимальный ток диода – 0,15А;
  • напряжение питания диода – 3,5В;
  • амплитудное напряжение сети  — 320В.

Для таких условий параметры конде-ра: 1,5мкФ, 400В.

Подключение нескольких светодиодов

При расчете конденсатора для светодиодной лампы необходимо учитывать, что диоды в ней соединены группами.

  • Напряжение питания для последовательной цепочки – Uсд * количество LED в цепи;
  • сила тока – Iсд * количество параллельных цепочек.

Для примера возьмём модель с шестью параллельными линиями из четырёх последовательных диодов.

Напряжение питания – 4 * 3,5В = 14В;
Сила тока цепи – 0,15А * 6 = 0,9А;

Для этой схемы параметры конде-ра: 9мкФ, 400В.

Простая схема блока питания светодиодов с конденсатором

Разберём устройство без трансформаторного блока питания для светодиодов на примере фабричного драйвера LED ламы.

  • R1 – резистор на 1Вт, который уменьшает значимость перепадов напряжения в сети;
  • R2,C2 – конде-р служит в качестве токоограничителя, а резистор для его разрядки после отключения от сети;
  • C3 – сглаживающий конде-р, для уменьшения пульсации света;
  • R3 – служит для ограничения перепадов напряжения после преобразования, но более целесообразно вместо него установить стабилитрон.

Какой конденсатор можно использовать для балласта?

В качестве гасящих конденсаторов для светодиодов используются керамические элементы рассчитанные на 400-500В. Использование электролитических (полярных) конденсаторов недопустимо.

Меры предосторожности

Безтрансформаторные схемы не имеют гальванической развязки. Сила тока цепи при появлении дополнительного сопротивления, например прикосновение рукой с  оголённому контакту в цепи, может значительно увеличится, став причиной электротравмы.

Оцените, пожалуйста, статью. Мы старались:) (4

Бестрансформаторные блоки питания_1

Блок питания с гасящим конденсатором

Сейчас в доме имеется много малогабаритной аппаратуры, которой требуется постоянное питание. Это и часы со светодиодной индикацией, и термометры, и малогабаритные приемники, и т.п. В принципе, они рассчитаны на батарейки, но те “садятся” в самый неподходящий момент.

Простой выход — за-питать их от сетевых блоков питания. Но даже малогабаритный сетевой (понижающий) трансформатор достаточно тяжел и места занимает не так уж мало.

А импульсные источники питания все-таки сложны, требуют для изготовления определенного опыта и недешевой комплектации. 

Решением данной проблемы при выполнении определенных условий может служить бестрансформаторный блок питания с гасящим конденсатором. Эти условия-.

– полная автономность питаемого аппарата, т.е. к нему не должны подключаться никакие внешние устройства (например, к приемнику магнитофон для записи программы);- диэлектрический (непроводящий) корпус и такие же ручки управления у самого блока питания и подключаемого к нему устройства.

Связано это с тем, что при питании от бестрансформаторного блока устройство находится под потенциалом сети, и прикосновение к его неизолированным элементам может хорошо “тряхнуть”.

Нелишне добавить, что при наладке таких блоков питания следует соблюдать правила техники безопасности и осторожность.

При необходимости использовать для наладки осциллограф блок питания нужно включать через разделительный трансформатор.

В самом простом виде схема бестрансформаторного блока питания имеет вид, показанный на рис.1. 

 Для ограничения броска тока при подключении блока к сети последовательно с конденсатором С1 и выпрямительным мостом VD1 включен резистор R2, а для разрядки конденсатора после отключения — параллельно ему резистор R1.

Бестрансформаторный источник питания в общем случае представляет собой симбиоз выпрямителя и параметрического стабилизатора. Конденсатор С1 для переменного тока представляет собой емкостное (реактивное, т.е. не потребляющее энергию) сопротивление Хс, величина которого определяется по формуле:

где f— частота сети (50 Гц); С—емкость конденсатора С1,Ф. Тогда выходной ток источника можно приблизительно определить так:

где Uc— напряжение сети (220 В).

Входная часть другого блока питания (рис.2а) содержит балластный конденсатор С1 и мостовой выпрямитель из диодов VD1, VD2 и стабилитронов VD3, VD4. Резисторы R1, R2 играют ту же роль, что и в первой схеме. Осциллограмма выходного напряжения блока приведена на рис.2б (когда напряжение на выходе превышает напряжение стабилизации стабилитронов, в противном случае он работает как обычный диод).

От начала положительного полупериода тока через конденсатор С1 до момента ti стабилитрон VD3 и диод,Ю2 открыты, а стабилитрон VD4 и диод V01 закрыты. В интервале времени ti…t3 стабилитрон VD3 и диод VD2 остаются открытыми, а через открывшийся стабилитрон VD4 проходит импульс тока стабилизации. Напряжение на выходе ивых и на стабилитроне VD4 равно его напряжению стабилизации UCT.

Импульсный ток стабилизации, являющийся для диодно-стабилит-ронного выпрямителя сквозным, минует нагрузку RH, которая подключена к выходу моста. В момент t2 ток стабилизации достигает максимума, а в момент 1з равен нулю. До окончания положительного полупериода остаются открытыми стабилитрон VD3 и диод VD2.

В момент t4 завершается положительный и начинается отрицательный полупериод, от начала которого до момента ts уже стабилитрон VD4 и диод VD1 открыты, а стабилитрон VD3 и диод VD2 закрыты. В интервале времени ts-.

ty стабилитрон VD4 и диод VD1 продолжают оставаться открытыми, а через стабилитрон VD3 при напряжении UCT проходит сквозной импульс тока стабилизации, максимальный в моментte- Начиная от1уидо завершения отрицательного полупериода остаются открытыми стабилитрон VD4 и диод VD1.

Рассмотренный цикл работы диодно-стабилит-ронного выпрямителя повторяется в следующие периоды сетевого напряжения.

Таким образом, через стабилитроны VD3, VD4 от анода к катоду проходит выпрямленный ток, а в противоположном направлении — импульсный ток стабилизации. В интервалы времени t-j…ts и tg.

^ty напряжение стабилизации изменяется не более чем на единицы процентов. Значение переменного тока на входе моста VD1…

VD4 в первом приближении равно отношению напряжения сети к емкостному сопротивлению балластного конденсатора С1.

Работа диодно-стабилитроиного выпрямителя без балластного конденсатора, ограничивающего сквозной ток, невозможна. В функциональном отношении они неразделимы и образуют единое целое — кон-денсаторно-стабилитронный выпрямитель.

Разброс значений UCT однотипных стабилитронов составляет примерно 10%, что приводит к возникновению дополнительных пульсаций выходного напряжения с частотой питающей сети. Амплитуда напряжения пульсации пропорциональна разнице значений UCT стабилитронов VD3 и VD4.

При использовании мощных стабилитронов Д815А…Д817Г их можно установить на общий радиатор, если в обозначении их типа присутствуют буквы “ПП” (стабилитроны Д815АПП…Д817ГПП имеют обратную полярность выводов). В противном случае диоды и стабилитроны необходимо поменять местами.

Бестрансформаторные источники питания обычно собираются по классической схеме: гасящий конденсатор, выпрямитель переменного напряжения, конденсатор фильтра, стабилизатор. Емкостной фильтр сглаживает пульсации выходного напряжения.

Чем больше емкость конденсаторов фильтра, тем меньше пульсации и, соответственно, больше постоянная составляющая выходного напряжения.

Однако в ряде случаев можно обойтись без фильтра, который зачастую является самым громоздким узлом такого источника питания.

Известно, что конденсатор, включенный в цепь переменного тока, сдвигает его фазу на 90°. Фазосд-вигающий конденсатор применяют, например, при подключении трехфазного двигателя к однофазной сети.

Если в выпрямителе применить фазосдвигающий конденсатор, обеспечивающий взаимное перекрытие полуволн выпрямленного напряжения, во многих случаях можно обойтись без громоздкого емкостного фильтра или существенно уменьшить его емкость.

Схема подобного стабилизированного выпрямителя показана на рис.3.

Трехфазный выпрямитель VD1 …VD6 подключен к источнику переменного напряжения через активное (резистор R1) и емкостное (конденсатор С1) сопротивления.

Выходное напряжение выпрямителя стабилизирует стабилитрон VD7. Фазосдвигающий конденсатор С1 должен быть рассчитан на работу в цепях переменного тока. Здесь, например, подойдут конденсаторы типа К73-17 с рабочим напряжением не ниже 400 В.

Такой выпрямитель можно применять там, где необходимо уменьшить габариты электронного устройства, поскольку размеры оксидных конденсаторов емкостного фильтра, как правило, гораздо больше, чем фазосдвигающего конденсатора сравнительно небольшой, емкости.

Еще одно преимущество предложенного варианта состоит в том, что потребляемый ток практически постоянен (в случае постоянной нагрузки), тогда как в выпрямителях с емкостным фильтром в момент включения пусковой ток значительно превышает установившееся значение (вследствие заряда конденсаторов фильтра), что в некоторых случаях крайне нежелательно.

Описанное устройство можно применять и с последовательными стабилизаторами напряжения, имеющими постоянную нагрузку, а также с нагрузкой, не требующей стабилизации напряжения.

Совершенно простенький бестрансформаторный блок питания (рис.4) можно соорудить “на коленке” буквально за полчаса. В данном варианте схема рассчитана на выходное напряжение 6,8 В и ток 300 мА.

Напряжение можно менять заменой стабилитрона VD4 и, при необходимости, VD3. А установив транзисторы на радиаторы, можно увеличить и ток нагрузки. Диодный мост — любой, рассчитаный на обратное напряжение не менее 400 В.

Кстати, можно вспомнить и про “древние” диоды Д226Б.

В другом бестрансформаторном источнике (рис.5) в качестве стабилизатора применена микросхема КР142ЕН8. Его выходное напряжение составляет 12 В.

Если необходима регулировка выходного напряжения, то вывод 2 микросхемы DA1 подключают к общему проводу через переменный резистор, например, типа СПО-1 (с линейной характеристикой изменения сопротивления).

Тогда выходное напряжение может изменяться в диапазоне 12. ..22 В.

В качестве микросхемы DA1 для получения других выходных напряжений нужно применить соответствующие интегральные стабилизаторы, например, КР142ЕН5, КР1212ЕН5, КР1157ЕН5А и др. Конденсатор С1 должен быть обязательно на рабочее напряжение не ниже 300 В, марки К76-3, К73-17 или аналогичный (неполярный, высоковольтный).

Оксидный конденсатор С2 выполняет роль фильтра по питанию и сглаживает пульсации напряжения. Конденсатор СЗ уменьшает помехи по высокой частоте. Резисторы R1, R2 — типа МЛТ-0,25. Диоды VD1…VD4 можно заменить на КД105Б…КД105Г, КД103А, Б, КД202Е. Стабилитрон VD5 с напряжением стабилизации 22…

27 В предохраняет микросхему от бросков напряжения в момент включения источника.

Несмотря на то, что теоретически конденсаторы в цепи переменного тока мрщности не потребляют, реально в них из-за наличия потерь может выделяться некоторое количество тепла.

Проверить пригодность конденсатора в качестве гасящего для использования в бестрансформаторном источнике можно просто подключив его к электросети и оценив температуру корпуса через полчаса. Если конденсатор успевает заметно разогреться, он не подходит.

Практически не нагреваются специальные конденсаторы для промышленных электроустановок (они рассчитаны на большую реактивную мощность). Такие конденсаторы обычно используются в люминесцентных светильниках, в пуско-регулирующих устройствах асинхронных электродвигателей и т.п.

В 5-вольтовом источнике (рис.6) с током нагрузки до 0,3 А применен конденсаторный делитель напряжения.

Он состоит из бумажного конденсатора С1 и двух оксидных С2 и СЗ, образующих нижнее (по схеме) неполярное плечо емкостью 100 мкФ (встречно-последовательное включение конденсаторов). Поляризующими диодами для оксидной пары служат диоды моста.

При указанных номиналах элементов ток короткого замыкания на выходе блока питания равен 600 мА, напряжение на конденсаторе С4 в отсутствие нагрузки — 27 В.

Блок для питания портативного приемника (рис.7) легко помещается в его батарейный отсек. Диодный мост VD1 рассчитывается на рабочий ток, его предельное напряжение определяется напряжением, которое обеспечивает стабилитрон VD2.

Элементы R3, VD2, VT1 образуют аналог мощного стабилитрона. Максимальный ток и рассеиваемая мощность такого стабилитрона определяются транзистором VT1. Для него может потребоваться радиатор.

Но в любом случае максимальный ток этого транзистора не должен быть меньше тока нагрузки. Элементы R4, VD3 — цепь индикации наличия

выходного напряжения. При малых токах нагрузки необходимо учитывать ток, потребляемый этой цепью. Резистор R5 нагружает цепь питания малым током, чем стабилизирует ее работу.

Гасящие конденсаторы С1 и С2 — типа КБГ или аналогичные. Можно также применить и К73-17 с рабочим напряжением 400 В (подойдут и с 250 В, так как они включены последовательно). Выходное напряжение зависит от сопротивления гасящих конденсаторов переменному току, реального тока нагруз-ки и от напряжения стабилизации стабилитрона.

Для стабилизации напряжения бестрансформаторного блока питания с гасящим конденсатором можно использовать симметричные динисторы (рис.8).

При зарядке конденсатора фильтра С2 до напряжения открывания динистора VS1 он включается и шунтирует вход диодного моста. Нагрузка в это время получает питание от конденсатора С2. В начале следующего полупериода С2 вновь подзаряжается до того же напряжения, и процесс повторяется.

Начальное напряжение разрядки конденсатора С2 не зависит от тока нагрузки и напряжения сети, поэтому стабильность выходного напряжения блока достаточно высокая.

Падение напряжения на динисторе во включенном состоянии невелико, рассеиваемая мощность, а значит, и нагрев его значительно меньше, чем у стабилитрона. Максимальный ток через динистор составляет около 60 мА.

Если для получения необходимого выходного тока этого значения недостаточно, можно “умощнить” динистор симистором или тиристором (рис.9). Недостаток таких источников питания — ограниченный выбор выходных напряжений, определяемый напряжениями включения динисторов.

Share: