Измеритель емкости электролитических конденсаторов с тестом на утечку

Содержание
  1. Прибор для проверки конденсатора: виды устройств и техника измерений
  2. Принцип работы
  3. Характеристики и виды
  4. Приборы для измерения
  5. Использование ESR-метра
  6. Проверка мультиметром
  7. Применение тестера
  8. Схема самодельного прибора
  9. Как проверить исправность конденсатора, его емкость и сопротивление
  10. Как проверить конденсатор мультиметром
  11. Проверка конденсатора мультиметром
  12. Как проверить конденсатор с помощью приборов
  13. Проверяем конденсатор мультиметром в режиме омметра
  14. Как проверить емкость конденсатора мультиметром
  15. Как проверить конденсатор тестером (стрелочным прибором)
  16. Измерение емкости электролитических конденсаторов
  17. Измеритель емкости электролитических конденсаторов с тестом на утечку
  18. Как проверить электролитический конденсатор и какие инструменты использовать?
  19. Особенности электролитических конденсаторов
  20. Как проверить конденсатор
  21. Проверка мультиметром
  22. Прибор с функцией измерения емкости
  23. Приборы без функции измерения емкости
  24. Как проверить электролитический конденсатор не выпаивая
  25. Измеритель емкости электролитических конденсаторов с тестом на утечку
  26. Перечень радиоэлементов

Прибор для проверки конденсатора: виды устройств и техника измерений

Измеритель емкости электролитических конденсаторов с тестом на утечку

Измеритель емкости электролитических конденсаторов с тестом на утечку

При ремонте или радиоконструировании часто приходится сталкиваться с таким элементом, как конденсатор. Его главной характеристикой является ёмкость.

Из-за особенностей устройства и режимов работы выход из строя электролитов становится одной из основных причин неисправностей радиоаппаратуры. Для определения ёмкости элемента используются разные приборы для проверки.

Их несложно приобрести в магазине, а можно изготовить и самому.

Конденсатор — электрический элемент, служащий для накопления заряда или энергии. Конструктивно радиоэлемент представляет собой две пластины, выполненные из токопроводящего материала, между которыми располагается слой диэлектрика. Токопроводящие пластины называются обкладками. Они не связаны между собой общим контактом, но при этом каждая имеет собственный вывод.

Конденсаторы имеют многослойный вид, в них слой диэлектрика чередуется со слоями обкладок. Они представляют собой цилиндр или параллелепипед с закруглёнными углами.

Основной параметр электрического элемента — это ёмкость, единицей измерения которой является фарада (F, Ф). На схемах и в литературе радиодеталь обозначается латинской буквой C.

После символа указывается порядковый номер на схеме и значение номинальной ёмкости.

Так как одна фарада — это довольно большая величина, то реальные значения ёмкости конденсатора значительно ниже. Поэтому при записи принято использовать условные сокращения:

  • П — пикофарада (pF, пФ);
  • Н — нанофарада (nF, нФ);
  • М — микрофарада (mF, мкФ).

Принцип работы

Принцип действия радиодетали зависит от вида электрической сети. При подключении к выводам обкладок источника постоянного тока носители заряда попадают на токопроводящие пластины конденсатора, где происходит их накопление.

Вместе с тем на выводах обкладок появляется разность потенциалов. Её значение увеличивается до тех пор, пока не достигнет величины, равной источнику тока.

Как только это значение выровняется, на обкладках перестаёт накапливаться заряд, а электрическая цепь разрывается.

В сети с переменным током конденсатор представляет собой сопротивление. Его величина связана с частотой тока: чем она выше, тем ниже сопротивление и наоборот. При воздействии на радиоэлемент переменной силы тока происходит накопление заряда. Со временем ток заряда уменьшается и пропадает полностью. Во время этого процесса на обкладках устройства концентрируются заряды разных знаков.

Диэлектрик, проложенный между ними, препятствует их перемещению. В момент смены полуволны происходит разряд конденсатора через нагрузку, подключённую к его выводам. Возникает ток разряда, то есть в электрическую цепь начинает поступать накопленная радиоэлементом энергия.

Характеристики и виды

Измерения параметров конденсаторов связаны с нахождением величин их характеристик. Но среди них наиболее важной является ёмкость, которая обычно и измеряется. Эта величина обозначает количество заряда, которое может накопить радиоэлемент. В физике электроёмкостью называют величину, равную отношению заряда на любой обкладке к разности потенциалов между ними.

При этом ёмкость конденсатора зависит от площади обкладок элемента и толщины диэлектрика. Кроме ёмкости радиоприбор характеризуется также полярностью и величиной внутреннего сопротивления. Применяя специальные приборы, эти величины также можно измерить. Сопротивление устройства влияет на саморазряд элемента. Кроме этого, к основным характеристикам конденсатора относят:

  • Сопротивление утечки. Это внутренний импеданс, через который происходит разряд конденсатора, неподключенного к внешней цепи.
  • Эквивалентную индуктивность. Это паразитная характеристика, влияющая на работу элемента на высоких частотах.
  • Эквивалентное последовательное сопротивление (ESR). Состоит из обобщённого сопротивления выводов и обкладок, представляется как резистор, подключённый последовательно с конденсатором.
  • Классифицируются конденсаторы по разным критериям, но в первую очередь их разделяют по типу диэлектрика. Он может быть газообразным, жидким и твёрдым. Чаще всего в качестве него используются стекло, слюда, керамика, бумага и синтетические плёнки. Кроме того, конденсаторы различаются по способности изменения величины ёмкости и могут быть:

  • Постоянными. Относящиеся к этому виду конденсаторы обладают постоянным значением ёмкости.
  • Переменными. К ним относятся радиоэлементы, величину ёмкости которых можно изменять в процессе работы устройства. Изменение происходит за счёт смены температурного режима, электрических параметров цепи и механических методов.
  • Построечными. Позволяют изменять ёмкость при настройке аппаратуры, при этом элемент не должен быть подключён к источнику питания.
  • Приборы для измерения

    Для измерения параметров конденсаторов используются как специализированные приборы, так и общего применения. Измерители ёмкости по своему типу разделяют на два вида: цифровые и аналоговые.

    Специализированные устройства могут измерить ёмкость элемента и внутреннее его сопротивление. Простым тестером обычно диагностируется только пробой диэлектрика или большая утечка.

    Кроме этого, если тестер многофункциональный (мультиметр), то им можно измерить и ёмкость, но обычно предел его измерения невысокий.

    Таким образом, в качестве прибора для проверки конденсаторов можно использовать:

    • ESR или RLC-метр;
    • мультиметр;
    • тестер.

    При этом диагностику элемента прибором, относящемся к первому типу, можно проводить без выпаивания из схемы. Если же используется второй или третий тип, то элемент или хотя бы один из его выводов необходимо от неё отсоединить.

    Использование ESR-метра

    Измерение параметра ESR очень важно при исследовании конденсатора на работоспособность. Дело в том, что почти вся современная техника является импульсной, использующей в своей работе высокие частоты. Если эквивалентное сопротивление конденсатора велико, то на нём происходит выделение мощности, а это вызывает нагрев радиоэлемента, приводящий к его деградации.

    Конструктивно специализированный измеритель представляет собой корпус с жидкокристаллическим экраном. В качестве его источника питания используется батарейка типа КРОНА.

    В приборе предусмотрено два разъёма разного цвета, к которым подключаются щупы. Красного цвета щуп считается положительным, а чёрного — отрицательным.

    Это сделано для того, чтобы можно было правильно проводить измерения полярных конденсаторов.

    Перед измерением ESR сопротивления радиодеталь необходимо разрядить, иначе возможен выход прибора из строя. Для этого выводы конденсатора замыкаются сопротивлением порядка одного килоома на короткое время.

    Непосредственно измерение происходит путём соединения выводов радиодетали со щупами прибора. В случае электролитического конденсатора необходимо соблюдать полярность, то есть соединять плюс с плюсом, а минус с минусом. После этого прибор включается, и через некоторое время на его экране появляются результаты измерения сопротивления и ёмкость элемента.

    Следует отметить, что основная масса таких приборов изготавливается в Китае. В основе их действия лежит использование микроконтроллера, работой которого управляет программа.

    При измерении контроллер сравнивает сигнал, прошедший через радиоэлемент, с внутренним и на основании различий по сложному алгоритму выдаёт данные.

    Поэтому точность измерения таких приборов зависит в основном от качества комплектующих, используемых при их изготовлении.

    Проверка мультиметром

    Мультиметром можно измерить почти все основные параметры, но точность этих результатов будет ниже, чем при использовании ESR-прибора. Измерение с помощью мультиметра можно представить следующим образом:

  • Для увеличения точности результата конденсатор выпаивается из схемы.
  • Мультиметр переключается на режим измерения ёмкости. На панели прибора этот режим изображается символом –|(– или Cx.
  • Выбирается наиболее подходящий диапазон значения. Если при этом возникают трудности, устанавливается максимально возможное значение.
  • Штекеры измерительного провода подключаются к разъёмам COM и VΩmA.
  • Щупами дотрагиваются до ножек конденсатора. В случае необходимости соблюдают полярность.
  • Мультиметр выдаст сигнал на элемент, измерит на нём напряжение и автоматически рассчитает ёмкость.
  • Применение тестера

    Если под рукой не окажется мультиметра, способного измерить ёмкость, то можно провести измерения подручными средствами. Для этого понадобятся резистор, блок питания с постоянным уровнем выходного сигнала и устройство, измеряющее напряжение. Методику измерения лучше рассмотреть на конкретном примере.

    Пусть будет конденсатор, ёмкость которого неизвестна. Чтобы её узнать, понадобится выполнить следующие действия:

  • С помощью тестера измеряется напряжение источника питания. Например, эта величина составила 9 вольт.
  • Резистор 1 кОм последовательно соединяется с измеряемым конденсатором, образуя RC-цепочку.
  • Конденсатор закорачивается, а RC-цепочка подключается к источнику питания.
  • С помощью мультиметра замеряется напряжение цепи. Допустим, оно не изменилось и осталось равным девяти вольтам.
  • Вычисляется значение, составляющее 95% от этого напряжения. Для нашего случая это значение равно 8,55 В.
  • На следующем этапе включается секундомер, и одновременно убирается закоротка с конденсатора.
  • Как только тестер покажет напряжение 8,55 В, секундомер останавливается. Пусть это время составит 60 секунд.
  • Используя формулу 3*t = 3*R*C, нужно вычислить ёмкость. Для рассматриваемого примера она составит: C = (60/3)/1000 = 0,02 Ф или 20 000 мкФ.
  • Такой алгоритм измерения нельзя назвать точным, но общее представление о ёмкости радиоэлемента он вполне способен дать.

    Схема самодельного прибора

    Если есть познания в радиолюбительстве, можно собрать прибор для измерения ёмкости своими руками. Существует множество схемотехнических решений разного уровня сложности.

    Многие из них основаны на измерении частоты и периода импульсов в цепи с измеряемым конденсатором.

    Такие схемы сложны, поэтому проще использовать измерения, основанные на вычислении реактивного сопротивления при прохождении импульсов фиксированной частоты.

    В основе схемы такого прибора лежит мультивибратор, частота работы которого определяется ёмкостью и сопротивлением резистора, подключёнными к выводам D1.1 и D1.2. С помощью переключателя S1 устанавливается диапазон измерения, то есть изменяется частота. С выхода мультивибратора импульсы поступают на усилитель мощности и далее на вольтметр.

    Калибровка прибора проводится на каждом пределе с помощью эталонного конденсатора. Чувствительность устанавливается резистором R6.

    Как проверить исправность конденсатора, его емкость и сопротивление

    Измеритель емкости электролитических конденсаторов с тестом на утечку

    Иногда возникает необходимость проверки электронных элементов, в том числе и конденсаторов.

    По разнообразным причинам конденсаторы выходят из строя, это может быть внутреннее короткое замыкание, увеличение тока утечки пробой конденсатора в следствие превышения максимально допустимого напряжения или же обычное уменьшение емкости – причина которая со временем постигает почти все электролитические конденсаторы.

    Методы проверки конденсатора, мы рассмотрим, довольно простые, здесь главное умение пользоваться тестером или мультиметром и правильно применять данную инструкцию. Для начала необходимо знать что все конденсаторы разделяются на полярные и неполярные. К полярным относятся электролитические конденсаторы, к неполярным все остальные.

    Полярные конденсаторы в схеме должны стоять таким образом чтоб на обозначенном минусовом выводе был минус питания, а на плюсовом контакте плюс, только так ы не иначе.

    Если нарушить полярность то минимум что будет это конденсатор выйдет из строя, но при достаточном напряжение он вздуется и взорвется, для того чтоб при аварийной ситуации конденсатор не разрывало на осколки, в импортных конденсаторах, в верхней части корпус сделан с тонкого материала и нанесены специальные разделительные прорези, при взрыве такой конденсатор просто выстреливает вверх и не задевает при этом элементы вокруг себя.

    Перед проверкой конденсатор необходимо обязательно разрядить любым металлическим предметом закоротив его выводы, и так перед каждой проверкой.

    Если проверяемый конденсатор находится на плате, необходимо хотя бы один его вывод освободить от схемы и приступить тогда уже к замерам. Но так как большинство современных конденсаторов имеют достаточно низкую посадку – лучше конденсатор выпаять полностью.

    С помощью мультиметра можно проверить практически любой конденсатор по емкости больше 0.25 микрофарад. Полярность конденсатора обозначена на корпусе в виде поздовжной полосы с знаками минус – это минусовой вывод конденсатора. И так выставляем тестер в режим или прозвонки или сопротивления.

    Мультиметр в таком режиме будет иметь на своих щупах постоянное напряжение. Касаемся щупами контактов конденсатора и видим как показатель сопротивления плавно растет – конденсатор заряжается. Скорость заряда будет напрямую зависеть от емкости конденсатора.

    Через определенное время конденсатор зарядится и на дисплее мультиметра будет значение “1” или по другому говоря “бесконечность” это уже говорит о том что конденсатор не пробит и не замкнут.

    Но если при касание щупами контактов конденсатора мы сразу наблюдаем значение “1” то это говорит об внутреннем обрыве – конденсатор не исправен.

    Бывает и другое, значение “000” или близкое очень малое значение которое не меняется (при зарядке) иногда мультиметр пищит, это говорит о пробое или коротком замыкание пластин внутри конденсатора.

    Неполярные конденсаторы проверяются довольно просто, тестер выставляем в режим измерения сопротивления (мегаОмы), касаясь щупами контактов конденсатора  – сопротивление должно быть не меньше 2 МегОм. Если наблюдается меньше то конденсатор неисправен, но убедитесь что вы в момент замера не касались пальцами щупов.

    Проверяя стрелочным прибором. Суть проверки та же что и мультиметром, но здесь можно уже более наглядно наблюдать процесс зарядки конденсатора потому как мы видим отклонения стрелки а не мигающие цифры на дисплее.

    Исправный конденсатор при контакте с щупами, не забываем разряжать, должен сначала отклонить стрелку а затем медленно и плавно возвращать стрелку назад, скорость возврата стрелки будет зависеть от емкости конденсатора. Если стрелка не отклоняется или же отклонившись не возвращается это говорит о явной неисправности конденсатора.

    Но если емкость конденсатора очень мала, “зарядки” можно и не заметить – практически сразу же стрелка уйдет в бесконечность, то есть не сдвинется с места. Для конденсатора же более 500 микрофарад – такая картина практически сразу же будет говорить о внутреннем обрыве. Хорошим способом будет проверка заведомо исправного конденсатора (для наглядности) и сравнение с испытуемым.

    Такой способ даст возможность более уверено ответить на вопрос – рабочий ли конденсатор? Так как невозможно наблюдать столь быстрый процесс заряда для проверки конденсаторов малой емкости есть специальный способ который с точностью определит нет ли обрыва в нем.

    Собирается небольшая схемка состоящая с последовательно соединенных конденсатора, амперметра переменного тока и токоограничительного резистора. Соединенную цепь подключают к источнику переменного напряжения, с напряжением не больше 20% от максимального напряжения конденсатора.

    Если стрелка амперметра не отклоняется это говорит об внутреннем обрыве конденсатора Для проверки емкости нам нужно убедится что реальная емкость конденсатора соответствует указанной на его корпусе.

    Все электролитические конденсаторы со временем (в процессе работы) “подсыхают” и теряют свою емкость, это естественный процесс и для каждой конкретной схемы существуют свои припуски и отклонения. Проверяют емкость мультиметром в режиме “Cx” выбирают примерную емкость с максимальным пределом.

    Конденсатор разряжают об металлический предмет, например пинцет и вставляют в гнездо проверки конденсаторов. Для более точных показаний необходимо следить за тем чтоб в мультиметре стояла новая и не розряженая “крона”.Применяют и специальные приборы внешне схожие с мультиметром, которые специализированы конкретно для проверки конденсаторов и имеют достаточно широкий диапазон измерений емкости, от единиц пикофарад до десятков тысяч микрофарад, не каждый профессиональный мультиметр может похвастаться и половиной того диапазона емкостей.

    Но если у вас под рукой нет ни мультиметра ни “микрофарадметра” можно достаточно приблизительно замерить емкость стрелочным омметром.

    Как писалось выше, конденсатор заряжают прикасаясь щупами к его контактам – “засекаем” время отклонения стрелки назад и сравниваем время с заведомо исправным (новым) конденсатором, если время сильно не отличается то емкость в пределах нормы и конденсатор исправен.

    Таким же способом можно определить ток утечки конденсатора. Для этого конденсатор щупами заряжают до отклонения стрелки назад.

    С интервалом несколько секунд (зависит от емкости) щупы прикладывают снова, если стрелка снова проделывает такой же весь путь то это говорит о повышенном токе утечки и уже частичном неисправности конденсатора.

    В исправного же конденсатора в течение несколько секунд, чем больше емкость тем больше времени, должен сохранятся “заряд” и стрелка уже не должна показывать столь низкое сопротивление вначале как при первой зарядке.

    “Зарядка напряжением”.

    Такой способ проверки аналогичной ситуации подходит для более высоковольтных конденсаторов так как на малом напряжение (от тестера) может быть не понятна вся ситуация.

    И так суть способа заключается в том что конденсатор заряжают  от источника постоянного напряжения, для этого напряжение выбирают немного меньше максимального и заряжают контакты конденсатора, как правило хватит 1-2 секунды.

    После чего “зарядку” отсоединяют и мультиметром измеряют напряжение на контактах конденсатора, оно должно быть практически таким же что и использовалось при зарядке, если это ни так и оно сильно занижено то у конденсатора большой ток утечки и он неисправен.

    Мултиметром наблюдают напряжение в течение некоторого времени, конденсатор будит плавно терять напряжение, скорость будит зависеть от емкости и ESR (внутреннего сопротивления).

    Как проверить конденсатор без приборов?

    В некоторых ситуациях при отсутствие омметра или вольтметра, исправность электролитического конденсатора можно проверить только лишь при наличие источника подходяще допустимого напряжения. Конденсатор в течение 1-2 секунд заряжают, а затем нужно замкнуть его контакты металлической отверткой. У исправного конденсатора должна появится яркая искра. Если же она тусклая или же едва заметная то это говорит о том что конденсатор неисправен и плохо держит заряд.

    Как проверить конденсатор мультиметром

    Измеритель емкости электролитических конденсаторов с тестом на утечку

    Приветствую всех друзья и читатели сайта «Электрик в доме». Думаю всем известно, что такое конденсатор. Если кто не видел данный элемент микросхем, то точно слушал о нем.

    Самой распространенной причиной неисправности в радиоэлектронике является повреждение именно этого элемента.

    Современная бытовая техника «начинена» электроникой и поломка такой крохотной детали приводит к потере функциональности всего механизма в целом.

    Чтобы определить какой именно конденсатор в схеме вышел из строя их необходимо проверить на работоспособность. И желательно это делать с помощью электронный приборов, та как визуальный осмотр не дает заключения о неисправности.

    Делать мы это будем с помощью недорогого и функционального прибора – мультиметра. В прошлой статье я писал о том, как с его помощью можно выполнить проверку сопротивления, а сегодня рассмотрим методику, как проверить конденсатор мультиметром.

    Написать данную статью меня попросил один из подписчиков. Я как всегда постараюсь изложить материал доступным языком, но если останутся вопросы, не стесняйтесь задавать их в комментариях.

    Проверка конденсатора мультиметром

    Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют.

    Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.

    Существует два вида конденсаторов:

  • 1) полярные;
  • 2) неполярные.
  • Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя.

    Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ.

    Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло. Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до единиц мкФ (микрофарад).

    Друзья некоторые из Вас могут задаться вопросом, зачем эта ненужная информация? Какая разница полярный-неполярный? Все это влияет на методику измерений. И перед тем как проверить конденсатор мультиметром нужно понимать, какой именно тип устройства перед нами находится.

    Как проверить конденсатор с помощью приборов

    Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки.

    https://www.youtube.com/watch?v=qPGggmHiIBQ

    Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.

    Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях.

    Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке «+», а минусовой к ножке «-».

    При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм. Если будет меньше то на дисплее будет отображаться – «1» (единица), можно ложно подумать что конденсатор неисправен.

    Проверяем конденсатор мультиметром в режиме омметра

    В нашей сегодняшней статье будем проверять четыре конденсатора: два полярных (диэлектрических) и два неполярных (керамических). Перед тем как выполнять проверку необходимо разрядить конденсатор. Для этого нужно замкнуть его выводы на металлический предмет.

    Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание.

    Проверим сначала полярные кондеры номиналом 5.6 мкФ и 3.3 мкФ соответственно (они мне достались от неисправных энергосберегающих лампочек).

    Друзья забыл отметить, перед выполнением проверки необходимо разряжать конденсатор. Для этого необходимо закоротить его выводы на металлический предмет (отвертку, щуп, провод и т.п.). Так показания будут более точными.

    Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.

    Почему так происходит? Почему на дисплее можно наблюдать «плавающие значения сопротивления»? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться.

    Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается. Скорость заряда напрямую зависит от емкости. Спустя время конденсатор зарядится и его сопротивление будет равно «бесконечности», а на дисплее мультиметра мы увидим «1».

    Это показатель того что конденсатор исправен.

    Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек.

    Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.

    В случае со второй неполярной парой конденсаторов делаем все аналогично. Касаемся щупами выводов и наблюдаем за изменением сопротивления на приборе.

    Первый из них кондер «104К» его сопротивление сначала немного снижается (до 900 кОм) потом начинает плавно расти, пока не перевалит за отметку. Заряжается дольше, чем остальные около 30 сек.

    Второй пример проверка конденсатора мультиметром типа МБГО емкостью 1 мкФ. На фото можно видеть, как изменяется сопротивление при проверке. Только в этом случае переключатель нужно установить на отметку 20 МОм (сопротивление большое, на 2-ке очень быстро заряжается).

    Сперва нужно снять заряд, для этого закорачиваем выводы отверткой:

    На дисплее прибора наблюдаем как начинает изменятся сопротивление: 

    По результатам данной проверки можно сделать вывод, что все варианты конденсаторов находятся в исправном состоянии.

    Как проверить емкость конденсатора мультиметром

    Одной из основных характеристик любого конденсатора является «емкость». Для того чтобы понять рабочий конденсатор или нет необходимо измерить данную характеристику и сравнить показатели с теми которые указаны производителем на корпусе устройства. Если под рукой есть хороший прибор, то измерить емкость конденсатора мультиметром не составит труда. Но здесь есть свои нюансы.

    Если пытаться измерить емкость с помощью щупов (как в моем случае с мультиметром DT9208A) то у Вас ничего не получится. Дело в том, что емкость нельзя проверить, просто подключив щупы к конденсатору. Так как проверить емкость конденсатора мультиметром и можно ли вообще это сделать?

    Для этой цели на мультиметре есть специальные разъемы «гнезда» -CX+. «-» и «+» означают полярность подключения.

    Давайте проверим емкость керамического кондера «104К». Напомню, маркировка 104 расшифровывается: 10 – значение в пФ, 4-количество нулей (100000 пФ = 100 нФ = 0.1 мкФ).

    Выставляем переключатель мультиметра на необходимую отметку – ближайшее большее значение (я установил на отметке 200 нФ). Берем конденсатор и вставляем ножки в разъемы мультиметра -CX+. Какой стороной вставлять не важно, так как данный кондер – неполярный. На дисплее мы видим значение емкости – 102.6 нФ. Что соответствует номинальным характеристикам.

    Следующий экземпляр электролитический конденсатор с номинальной емкостью 3.3 мкФ. Переключатель выставляем на отметке 20 мкФ. Теперь нужно правильно «воткнуть» кондер в разъемы с соблюдением полярности.

    Для этого нужно знать какая ножка «плюс», а какая «минус». Узнать это не составит труда, так как производитель уже позаботился об этом. Если присмотреться на корпусе видно специальная отметка – черная полоса с обозначением нуля.

    Со стороны этой ножки располагается «минус», с противоположной «плюс».

    Вставляем наш конденсатор в посадочные гнезда мультиметра. На фото видно, что емкость данного экземпляра равна 3.58 мкФ, что соответствует номинальным параметрам. Таким простым способом выполняется проверка конденсатора мультиметром.

    Другой пример кондер емкостью 5.6 мкФ. При проверке данный экземпляр показал емкость 5.9 мкФ, что тоже соответствует норме.

    Кондер МБГО, емкостью 1 мкФ показал результат 1.08, что также соответствует норме.

    Если при замерах окажется что емкость сильно отличается от номинальных значений (или вовсе равна нулю) это значит, что конденсатор неисправен и его нужно заменить.

    Как проверить конденсатор тестером (стрелочным прибором)

    Друзья завалялся у меня в гараже измерительный прибор времен СССР – Ц4313. Он вполне рабочий, поэтому я решил поэкспериментировать и выполнить проверку им.

    Почему я решил использовать его? Методика проверки не изменяется но, аналоговыми приборами (стрелочными) работу выполнять наглядно проще. Проще в плане визуального отслеживания. Здесь придется наблюдать не за изменением цифр на дисплее, а за отклонением стрелки прибора. Причем стрелка будет отклоняться сначала в одну сторону, затем в другую.

    Чтобы настроить тестер Ц4313 на измерение сопротивления нужно нажать кнопку «rx». Вставляем щупы прибора в рабочие контакты. Для начала берем конденсатор и разряжаем его. Затем касаемся щупами контактов кондера.

    Если конденсатор исправный стрелка сначала отклонится, а затем по мере заряда плавно возвратится в исходное (нулевое) положение. Скорость перемещения стрелки зависит от того какой емкости испытуемый конденсатор.

    Если стрелка прибора не отклоняется или отклонилась и зависла в определенном положении, это говорит о том, что конденсатор неисправный.

    На этом все дорогие друзья, надеюсь, данная статья, как проверить конденсатор мультиметром цифровым и стрелочным была для вас интересной и раскрыла все вопросы. Если что, не стесняйтесь писать комментарии. Также особая благодарность за РЕПОСТ в соц.сетях.

    Похожие материалы на сайте:

    Измерение емкости электролитических конденсаторов

    Измеритель емкости электролитических конденсаторов с тестом на утечку

    В. ЧЕРНИКОВ, “Радио” #12, стр.54.

    В повседневной практике радиолюбители нередко сталкиваются с необходимостью измерения емкости конденсаторов, особенно электролитических, так как из-за высыхания электролита она со временем снижается. Кроме того, электролитические конденсаторы имеют большие допуски по емкости.

    Описываемый здесь прибор позволяет измерять емкость полярных и неполярных электролитических и неэлектролитических конденсаторов до 3000 мкФ. Отсчет идет непосредственно по шкале стрелочного измерительного прибора.

    Работа прибора основана на измерении протекающего через конденсатор переменного тока при подведении к нему пульсирующего напряжения от однополупериодного выпрямителя. Принцип действия прибора поясняет схема, приведенная на рис. 1.

    Во время положительной полуволны переменного напряжения на верхнем (по схеме) выводе вторичной обмотки трансформатора Т1 конденсатор Сх заряжается через выходное сопротивление выпрямителя, а во время отрицательной — разряжается через резистор R1.

    Эффективное значение тока /с через конденсатор пропорционально его емкости. Нижняя граница емкости измеряемых конденсаторов ограничивается чувствительностью измерителя тока, верхняя — постоянной времени цепи разрядки CхR1.

    При этом надо иметь в виду, что значительное уменьшение сопротивления резистора R1 для уменьшение постоянной времени нецелесообразно из-за резкого увеличения рассеиваемой резистором мощности.

    Принципиальная схема прибора показана на рис. 2. Диапазон измерения емкости — от 3000 пФ до 300 мкФ. Измерительный прибор PAJ — на переменное напряжение 30 мВ.

    Он может быть как промышленным, так и любительским с входным сопротивлением не менее 100 кОм. Может подойти, в частности, прибор, описание которого приведено в статье Б. Степанова и В.

    Фролова “Милливольтметр переменного тока” («Радио», 1977, № 2, с. 53-55).

    Перед измерениями переключателем S3 параллельно зажимам Сх подключают образцовый конденсатор Со и подстроенным резистором R7 устанавливают стрелку милливольтметра на отметку шкалы, соответствующую емкости измеряемого конденсатора.

    При точном подборе резисторов повторной калибровки при переключении диапазонов измерения не требуется. При измерении емкости электролитического конденсатора необходимо строго соблюдать его полярность подключения к прибору.

    Предварительно он должен быть проверен на отсутствие утечки и замыкания между обкладками.

    Трансформатор Т1 может быть от блока питания промышленного приемника, вторичная обмотка которого рассчитана на напряжение 6,3 В и ток не менее 1 А. Предохранитель F2 защищает прибор при случайном замыкании на выходе и в случае, пробоя проверяемого конденсатора.

    Переключатели и выключатели любой конструкции. Резистор R1 на мощность рассеяния не менее 5 Вт. Образцовый конденсатор С0 с отклонением бт номинала ±5%.

    Целесообразно в качестве калибровочного конденсатора использовать такой, емкость которого близка к верхнему пределу измерений на соответствующем поддиапазоне.

    Измеритель емкости электролитических конденсаторов с тестом на утечку

    Измеритель емкости электролитических конденсаторов с тестом на утечку

    Одной из самых частых причин выхода радиоэлектронной аппаратуры из строя или ухудшения ее параметров является изменение свойств электролитических конденсаторов. Иногда при ремонте аппаратуры (особенно произведенной в бывшем СССР), изготовленной с применением некоторых типов электролитических конденсаторов (например, K50-…

    ), для восстановления работоспособности устройства прибегают к полной или частичной замене старых электролитических конденсаторов. Все это приходится делать из-за того, что свойства материалов, входящих в электролитический (именно электролитический, т.к.

    в составе используется электролит) конденсатор, под электрическим, атмосферным, тепловым воздействиями со временем изменяются. И таким образом важнейшие характеристики конденсаторов, такие как емкость и ток утечки – так же изменяются (конденсатор “высыхает” и емкость его увеличивается, часто даже более чем на 50% от первоначальной, а ток утечки возрастает, т.е.

    внутреннее сопротивление, шунтирующее конденсатор уменьшается), что естественно приводит к изменению характеристик, а в худшем случае и к полному отказу аппаратуры.

    Вашему вниманию предлагается схема и пример конструкции измерителя емкости электролитических конденсаторов с тестом их на утечку.

    Сразу оговорюсь – оригинальная идея схемы не моя, а разработана [1], мною была исправлена одна ошибка, добавлена встроенная калибровка и тест на утечку конденсатора, разработан вариант конструкции и произведено изготовление с настройкой, испытаниями. Прекрасные результаты работы прибора заставили меня поделиться информацией с Вами.

    Измеритель обладает следующими качественными и количественными характеристиками :

    Суть прибора – измерение напряжения на выходе дифференцирующей цепи, рис.1.

    Напряжение на резисторе: Ur = i*R ,
    где i – общий ток через цепь, R – зарядное сопротивление ;

    Т.к. цепь дифференцирующая, то ее ток : i = С*(dUc/dt) , где С – заряжаемая емкость цепи, но конденсатор будет линейно заряжаться через источник тока, т.е. стабилизированным током : i = С*const,

    значит напряжение на сопротивлении (выходное для этой цепи): Ur = i*R = C*R*const – прямо пропорционально емкости заряжаемого конденсатора, а значит измеряя вольтметром напряжение на резисторе мы измеряем в некотором масштабе и исследуемую емкость конденсатора.

    представлена на рис. 2.
    В исходном положении испытуемый конденсатор Сх (или калибровочный С1 при включенном тумблере SA2) разряжен через R1. Измерительный конденсатор, на котором (не на испытуемом непосредственно) измеряется напряжение, пропорциональное емкости испытуемого Сх, разряжен через контакты SA1.2.

    При нажатии кнопки SA1 испытуемый Сх (С1) заряжается через соответствующие поддиапазону (галетный переключатель SA3) резисторы R2 … R11. При этом зарядный ток Сх (С1) проходит через светодиод VD1, чья яркость свечения позволяет судить о токе утечки (сопротивлении, шунтирующем конденсатор) в конце заряда конденсатора.

    Одновременно с Сх (С1) через источник стабилизированного тока VT1,VT2,R14,R15 заряжается и измерительный (заведомо исправный и с малым током утечки) конденсатор С2. VD2, VD3 используются для предотвращения разряда измерительного конденсатора через источник напряжения питания и стабилизатор тока соответственно.

    После заряда Сх (С1) до уровня, определяемого R12, R13 (в данном случае до уровня примерно половины напряжения источника питания), компаратор DA1 отключает источник тока, синхронный с Сх (С1) заряд С2 прекращается и напряжение с него, пропорциональное емкости испытуемого Сх (С1) индицируется микроамперметром PA1 (две шкалы со значениями кратными 3 и 10, хотя можно настроить на любую шкалу) через повторитель напряжения DA2 с высоким входным сопротивлением, что также обеспечивает долгое сохранение заряда на С2.

    При настройке положение калибровочного переменного резистора R17 фиксируется в каким-либо положении (например, в среднем).

    Подключая эталонные конденсаторы с точно известными значениями емкости в соответствующем диапазоне, резисторами R2, R4, R6-R11 производится калибровка измерителя – подбирается такой ток заряда, чтобы эталонные значения емкостей соответствовали определенным значениям на выбранной шкале.
    В моей схеме точные значения зарядных сопротивлений при напряжении питания 9 В составили:

    1
    510 кОм
    сумма сопротивлений R2,R3

    2
    113,5 кОм
    сумма сопротивлений R4,R5

    3
    33,0 кОм

    4
    7,97 кОм

    5
    2,38 кОм

    6
    0,628 кОм

    7
    0,26 кОм

    8
    0,096 кОм

    После калибровки один из эталонных конденсаторов становится калибровочным С1.

    Теперь при изменении напряжения питания (изменения температуры окружающей среды, например при сильном охлаждении готового отлаженного прибора на морозе показания емкости у меня получались заниженными процентов на 5) или просто для контроля точности измерений достаточно подключить С1 тумблером SA2 и, нажав SA1, калибровочным резистором R17 произвести подстройку PA1 на выбранное значение емкости С1.

    Перед началом изготовления прибора необходимо выбрать микроамперметр с подходящей шкалой(-ами), габаритами и током максимального отклонения стрелки, но ток может быть любым (порядка десятков, сотен микроампер) благодаря возможности настройки и калибровки прибора. Я применил микроамперметр ЭА0630 с Iном = 150 мкА, классом точности 1.5 и двумя шкалами 0 … 10 и 0 … 30.

    Плата была разработана с учетом того, что она будет крепиться непосредственно на микроамперметре при помощи гаек на его выводах,рис.3. Такое решение обеспечивает и механическую, и электрическую целостность конструкции. Прибор размещается в подходящий по габаритам корпус, достаточный для размещения также (кроме микроамперметра и платы):

    – SA1 – кнопка КМ2-1 из двух малогабаритных переключателей;- SA2 – малогабаритный тумблер МТ-1; – SA3 – малогабаритный галетный переключатель на 12 положений ПГ2-5-12П1НВ;- R17 – СП3-9а – VD1 – любой, я применил какой-то из серии КИПх-хх, красного цвета свечения;

    – 9-ти вольтовая батарея «Корунд» с габаритами 26.5 х 17.5 х 48.5 мм (без учета длины контактов).

    SA1, SA2, SA3, R17, VD1 закрепляются на верхней крышке (панели) прибора и располагаются над платой (батарея укрепляется при помощи проволочного каркаса прямо на плате), но соединяются с платой проводами, а все остальные радиоэлементы схемы располагаются на плате (и под микроамперметром непосредственно тоже) и соединяются печатным монтажом. Отдельного выключателя питания я не предусматривал (да и в выбранный корпус он бы уже не поместился), совместив его с проводами для подключения испытуемого конденсатора Сх в разъеме типа СГ5. «Мама» XS1 разъема имеет пластмассовый корпус для установки на печатную плату (она устанавливается в углу платы), а «папа» XP1 подключается через отверстие в торце корпуса прибора. При подключение разъема «папа» своими контактами 2-3 включает питание прибора. К проводам Сх параллельно неплохо приладить разъем (колодку) какой-либо конструкции для подключения отдельных отпаянных конденсаторов.

    При работе с прибором нужно быть внимательным с полярностью подключения электролитических (полярных) конденсаторов. При любой полярности подключения индикатор показывает одно и то же значение емкости конденсатора, но при неправильной полярности подключения, т.е.

    «+» конденсатора к «-» прибора, светодиод VD1 индицирует большой ток утечки (после заряда конденсатора светодиод продолжает ярко гореть), тогда как при правильной полярности подключения светодиод вспыхивает и постепенно гаснет, демонстрируя уменьшение зарядного тока до очень малой величины, практически до полного потухания (следует наблюдать 5-7 секунд), при условии, что испытуемый конденсатор обладает малым током утечки. Неполярные неэлектролитические конденсаторы имеют очень малый ток утечки, что и видно по очень быстрому и полному гашению светодиода. А если же ток утечки велик (сопротивление, шунтирующее конденсатор мало), т.е. конденсатор старый и «течет», то свечение светодиода видно уже при Rутечки = 100 кОм, а при меньших шунтирующих сопротивлениях светодиод горит еще ярче.
    Таким образом можно по свечению светодиода определять полярность электролитических конденсаторов: при том подключении, когда ток утечки меньше (светодиод менее ярок) – полярность конденсатора соответствует полярности прибора.

    Как проверить электролитический конденсатор и какие инструменты использовать?

    Измеритель емкости электролитических конденсаторов с тестом на утечку

    Электролитический конденсатор — наименее надежная радиодеталь, именно в нем чаще всего кроется причина неработоспособности электроприбора.

    Иногда неисправное состояние данного элемента определяется визуально, но чаще приходится применять специальные методы.

    Далее расскажем, как проверить электролитический конденсатор.

    Особенности электролитических конденсаторов

    В данном элементе роль одной из обкладок играет электролит. Последний бывает двух типов:

  • жидкий: обычно растворенная в воде смесь этиленгликоля, борной кислоты и борнокислого аммония;
  • твердый: вязкая смесь из различных компонентов.
  • Диэлектриком служит оксидная пленка на поверхности металлической обкладки, образующаяся под влиянием электролита.

    Недостаток электролитических конденсаторов — полярность: металлическая обкладка выступает только анодом (подключается к плюсу), электролит — катодом (к минусу).

    При обратной полярности оксидная пленка разрушается и в конденсаторе возникает проводимость между обкладками, что провоцирует вскипание электролита с последующим взрывом корпуса.

    Эту особенность учитывают при проверке.

    Существуют составные электролитические конденсаторы, в которых встречно — последовательно соединены два простых неполярных элемента.

    Как проверить конденсатор

    Иногда неисправность электролитического конденсатора выявляется без проверки — по вздутию или разрыву верхней крышки. Она намеренно ослаблена крестообразной просечкой и работает как предохранительный клапан, разрываясь при незначительном давлении. Без этого выделяющиеся из электролита газы разрывали бы корпус конденсатора с разбрызгиванием всего содержимого.

    Но нарушения могут и не проявляться внешне. Вот какими они бывают:

  • Из-за химических изменений снизилась емкость элемента. Например, конденсаторы с жидким электролитом высыхают, особенно при высокой температуре. Из-за этой особенности для них существуют ограничения по температуре эксплуатации (допустимый диапазон указан на корпусе).
  • Произошел обрыв вывода.
  • Появилась проводимость между обкладками (пробой). Собственно, она существует и в исправном состоянии — это так называемый ток утечки. Но при пробое эта величина из мизерной превращается в значительную.
  • Снизилось максимально допустимое напряжение (обратимый пробой). Для каждого конденсатора существует критическое напряжение, вызывающее замыкание между обкладками. Оно указывается на корпусе. В случае снижения этого параметра элемент при проверке ведет себя, как исправный, потому что тестеры подают низкое напряжение, но в схеме — как пробитый.
  • Самый примитивный способ проверки конденсатора — на искру. Элемент заряжают, затем замыкают выводы металлическим инструментом с изолированной ручкой. На руки при этом желательно одеть резиновые перчатки. Исправный элемент разряжается с образованием искры и характерного треска, нерабочий — вяло и незаметно.

    У данного способа два недостатка:

  • опасность электротравмы;
  • неопределенность: даже при наличии искры невозможно понять, соответствует ли фактическая емкость радиодетали номинальной.
  • Более информативна проверка с применением тестера. Лучше всего использовать специальный — LC-метр. Он предназначен для замера емкости, причем рассчитан на широкий диапазон. Но многое о состоянии конденсатора расскажет и обычный мультиметр.

    Проверка мультиметром

    Перед проверкой, конденсатор во избежание порчи мультиметра, необходимо разрядить. Низковольтные разряжают коротким замыканием выводов, высоковольтные — через резистор на 10 кОм, удерживаемый инструментом с изолированными ручками. Конденсаторы на платах разряжают дважды: до и после выпаивания.

    Способ проверки зависит от типа мультиметра.

    Прибор с функцией измерения емкости

    На панели настроек у таких моделей имеется сектор «CX». Диапазон измерений меньше, чем у LC-метра (до 200 мкФ), но для самых распространенных элементов его достаточно.

    Проверка выполняется просто:

    • переключатель мультиметра устанавливается в сектор «CX» на позицию с числовым значением, ближайшим большим по отношению к ожидаемой емкости;
    • выводы конденсатора подносятся к контактным площадкам в секторе «CX» либо их касаются щупами, вставленными в гнезда с такой же пометкой (в зависимости от модели);
    • на дисплее отобразится емкость.

    Результаты проверки

    Электролитические конденсаторы чувствительны к полярности. Гнезда «CX» и контактные площадки помечены значками «+» и «-». Отрицательный вывод конденсатора обозначается галочкой.

    Приборы без функции измерения емкости

    Такие модели используют в режиме омметра.

    Порядок действий:

    • черный щуп включают в гнездо «COM» (отрицательный потенциал), красный — в «V/Ω» (положительный потенциал);
    • переключатель устанавливают в сектор «Ω» на позицию 2 МОм;
    • соблюдая полярность, касаются щупами выводов.

    В режиме омметра мультиметр подает на щупы напряжение.

    Оно заряжает конденсатор и сопротивление последнего, постепенно нарастает от мизерного до величины свыше 2 МОм или бесконечности (обозначается единицей на дисплее).

    Рост сопротивления объективнее всего отражает аналоговый (стрелочный) тестер.

    О неисправности свидетельствует такое поведение прибора, когда сопротивление:

    • сразу стало бесконечным: оборван вывод;
    • остановилось на отметке ниже 2 МОм: конденсатор пробит.

    По времени, за которое сопротивление возрастает от минимума до максимума, путем сравнения с заведомо исправными конденсаторами, можно приблизительно определить емкость исследуемого.

    Данный метод не подходит для проверки конденсаторов с малой емкостью — 20 мкФ и ниже. Они быстро заряжаются и даже у исправного элемента сопротивление практически сразу становится бесконечным.

    Для проверки на обратимый пробой конденсатор подключают к лабораторному источнику постоянного тока с регулятором напряжения, последовательно с ним — мультиметр в режиме амперметра. Напряжение плавно увеличивают до максимально допустимого. Если в течение этого процесса тестер отобразит отличную от нуля силу тока, значит имеет место обратимый пробой.

    Как проверить электролитический конденсатор не выпаивая

    Проверка конденсатора на плате из-за влияния других компонентов схемы, дает неточный результат. К примеру, при наличии полупроводниковых элементов мультиметр вместо сопротивления конденсатора покажет сопротивление p-n перехода.

    Сильно искажают показания обмотки трансформаторов и другие катушки индуктивности.

    Для измерений применяют специальные приборы, использующие низкие напряжения. Это исключает повреждение других элементов. Для обычного мультиметра изготавливают приставку — схемы опубликованы в интернете.

    Можно проверить радиодеталь следующим способом: параллельно ей впаивается заведомо исправный конденсатор с тем же номиналом. Если схема заработала, значит исследуемый элемент неработоспособен.

    Чтобы проверить конденсатор, необязательно располагать специально предназначенным для этого прибором LC-метром. Пригодится и мультиметр. Главное не путать «плюс» с «минусом», если конденсатор электролитический.

    Измеритель емкости электролитических конденсаторов с тестом на утечку

    Измеритель емкости электролитических конденсаторов с тестом на утечку

    Измеритель емкости электролитических конденсаторов с тестом на утечку

    Одной из самых нередких обстоятельств выхода радиоэлектронной аппаратуры из строя либо ухудшения ее характеристик является изменение параметров электролитических конденсаторов.

    Время от времени при ремонте аппаратуры (в особенности произведенной в бывшем СССР), сделанной с применением неких типов электролитических конденсаторов (к примеру, K50-…), для восстановления работоспособности устройства прибегают к полной либо частичной подмене старенькых электролитических конденсаторов.

    Все это приходится делать из-за того, что характеристики материалов, входящих в электролитический (конкретно электролитический, т. к. в составе употребляется электролит) конденсатор, под электронным, атмосферным, термическим воздействиями с течением времени меняются.

    И таким макаром важные свойства конденсаторов, такие как емкость и ток утечки — так же меняются (конденсатор «сохнет» и емкость его возрастает, нередко даже более чем на 50% от начальной, а ток утечки увеличивается, т. е. внутреннее сопротивление, шунтирующее конденсатор миниатюризируется), что естественно приводит к изменению черт, а в худшем случае и к полному отказу аппаратуры.

    Вашему вниманию предлагается схема и пример конструкции измерителя емкости электролитических конденсаторов с тестом их на утечку.

    Сходу оговорюсь — уникальная мысль схемы не моя, а разработана [1], мною была исправлена одна ошибка, добавлена интегрированная калибровка и тест на утечку конденсатора, разработан вариант конструкции и произведено изготовка с настройкой, испытаниями. Красивые результаты работы прибора принудили меня поделиться информацией с Вами.

    Измеритель обладает последующими высококачественными и количественными чертами :

    1) измерение емкости на 8 поддиапазонах :

    0 … 3 мкф; 0 … 10 мкф; 0 … 30 мкф; 0 … 100 мкф; 0 … 300 мкф; 0 … 1000 мкф; 0 … 3000 мкф; 0 … 10000 мкф.

    2) оценка тока утечки конденсатора по светодиодному индикатору; 3) возможность четкого измерения при изменении напряжения питания и температуры среды (интегрированная калибровка измерителя); 4) напряжение питания 5-15 В ; 5) определение полярности электролитических (полярных) конденсаторов; 6) ток употребления в статическом режиме………… менее 6 мА; 7) время измерения емкости……………………………… менее 1 с; 8) ток употребления во время измерения емкости с каждым поддиапазоном увеличивается,

    но……………………………………………………………………… менее 150 мА на последнем поддиапазоне.

    Теория.

    Сущность прибора — измерение напряжения на выходе дифференцирующей цепи, рис.1.

    Напряжение на резисторе: Ur = i*R,
    где i — общий ток через цепь, R — зарядное сопротивление ;

    Т. к. цепь дифференцирующая, то ее ток : i = С*(dUc/dt) , где С — заряжаемая емкость цепи, но конденсатор будет линейно заряжаться через источник тока, т. е. стабилизированным током : i = С*const,

    означает напряжение на сопротивлении (выходное для этой цепи): Ur = i*R = C*R*const — прямо пропорционально емкости заряжаемого конденсатора, а означает измеряя вольтметром напряжение на резисторе мы измеряем в неком масштабе и исследуемую емкость конденсатора.

    Схема представлена на рис. 2.
    В начальном положении испытуемый конденсатор Сх (либо калибровочный С1 при включенном переключателе SA2) разряжен через R1. Измерительный конденсатор, на котором (не на испытуемом конкретно) измеряется напряжение, пропорциональное емкости испытуемого Сх, разряжен через контакты SA1.2.

    При нажатии кнопки SA1 испытуемый Сх (С1) заряжается через надлежащие поддиапазону (галетный тумблер SA3) резисторы R2 … R11. При всем этом зарядный ток Сх (С1) проходит через светодиод VD1, чья яркость свечения позволяет судить о токе утечки (сопротивлении, шунтирующем конденсатор) в конце заряда конденсатора.

    Сразу с Сх (С1) через источник стабилизированного тока VT1,VT2,R14,R15 заряжается и измерительный (заранее исправный и с малым током утечки) конденсатор С2. VD2, VD3 употребляются для предотвращения разряда измерительного конденсатора через источник напряжения питания и стабилизатор тока соответственно.

    После заряда Сх (С1) до уровня, определяемого R12, R13 (в этом случае до уровня приблизительно половины напряжения источника питания), компаратор DA1 отключает источник тока, синхронный с Сх (С1) заряд С2 прекращается и напряжение с него, пропорциональное емкости испытуемого Сх (С1) индицируется микроамперметром PA1 (две шкалы со значениями кратными 3 и 10, хотя можно настроить на всякую шкалу) через повторитель напряжения DA2 с высочайшим входным сопротивлением, что также обеспечивает длительное сохранение заряда на С2.

    Настройка

    При настройке положение калибровочного переменного резистора R17 фиксируется в любым положении (к примеру, в среднем).

    Подключая эталонные конденсаторы с точно известными значениями емкости в соответственном спектре, резисторами R2, R4, R6-R11 делается калибровка измерителя — подбирается таковой ток заряда, чтоб эталонные значения емкостей соответствовали определенным значениям на избранной шкале.

    В моей схеме четкие значения зарядных сопротивлений при напряжении питания 9 В составили:

    Спектр Зарядное сопротивление, кОм Примечания 1 510 кОм сумма сопротивлений R2,R3 2 113,5 кОм сумма сопротивлений R4,R5 3 33,0 кОм 4 7,97 кОм 5 2,38 кОм 6 0,628 кОм 7 0,26 кОм 8 0,096 кОм

    После калибровки один из эталонных конденсаторов становится калибровочным С1.

    Сейчас при изменении напряжения питания (конфигурации температуры среды, к примеру при сильном охлаждении готового отлаженного прибора на морозе показания емкости у меня выходили заниженными процентов на 5) либо просто для контроля точности измерений довольно подключить С1 переключателем SA2 и, нажав SA1, калибровочным резистором R17 произвести подстройку PA1 на выбранное значение емкости С1.

    Конструкция

    До производства прибора нужно избрать микроамперметр с подходящей шкалой(-ами), габаритами и током наибольшего отличия стрелки, но ток может быть хоть каким (порядка 10-ов, сотен микроампер) благодаря способности опции и калибровки прибора. Я применил микроамперметр ЭА0630 с Iном = 150 мкА, классом точности 1.5 и 2-мя шкалами 0 … 10 и 0 … 30.

    Плата была разработана с учетом того, что она будет крепиться конкретно на микроамперметре с помощью гаек на его выводах, рис.3. Такое решение обеспечивает и механическую, и электронную целостность конструкции. Прибор располагается в подходящий по габаритам корпус, достаточный для размещения также (не считая микроамперметра и платы):

    — SA1 — кнопка КМ2-1 из 2-ух компактных тумблеров; — SA2 — компактный переключатель МТ-1; — SA3 — компактный галетный тумблер на 12 положений ПГ2-5-12П1НВ; — R17 — СП3-9а — VD1 — хоть какой, я применил некий из серии КИПх-хх, красноватого цвета свечения;

    — 9-ти вольтовая батарея «Корунд» с габаритами 26.5 х 17.5 х 48.5 мм (без учета длины контактов).

    SA1, SA2, SA3, R17, VD1 закрепляются на верхней крышке (панели) прибора и размещаются над платой (батарея укрепляется с помощью проволочного каркаса прямо на плате), но соединяются с платой проводами, а все другие радиоэлементы схемы размещаются на плате (и под микроамперметром конкретно тоже) и соединяются печатным монтажом. Отдельного выключателя питания я не предугадывал (ну и в избранный корпус он бы уже не поместился), совместив его с проводами для подключения испытуемого конденсатора Сх в разъеме типа СГ5. «Мама» XS1 разъема имеет пластмассовый корпус для установки на интегральную схему (она устанавливается в углу платы), а «папа» XP1 подключается через отверстие в торце корпуса прибора. При подключение разъема «папа» своими контактами 2-3 включает питание прибора. К проводам Сх параллельно хорошо приладить разъем (колодку) какой-нибудь конструкции для подключения отдельных отпаянных конденсаторов.

    Работа с прибором

    При работе с прибором необходимо быть внимательным с полярностью подключения электролитических (полярных) конденсаторов. При хоть какой полярности подключения индикатор указывает одно и то же значение емкости конденсатора, но при неверной полярности подключения, т. е.

    «+» конденсатора к «-» прибора, светодиод VD1 индицирует большой ток утечки (после заряда конденсатора светодиод продолжает ярко пылать), тогда как при правильной полярности подключения светодиод вспыхивает и равномерно угасает, показывая уменьшение зарядного тока до очень малой величины, фактически до полного потухания (следует следить 5-7 секунд), при условии, что испытуемый конденсатор обладает малым током утечки. Неполярные неэлектролитические конденсаторы имеют очень малый ток утечки, что и видно по очень резвому и полному гашению светодиода. А если же ток утечки велик (сопротивление, шунтирующее конденсатор не достаточно), т. е. конденсатор старенькый и «течет», то свечение светодиода видно уже при Rутечки = 100 кОм, а при наименьших шунтирующих сопротивлениях светодиод пылает еще ярче.
    Таким макаром можно по свечению светодиода определять полярность электролитических конденсаторов: при том подключении, когда ток утечки меньше (светодиод наименее ярок) — полярность конденсатора соответствует полярности прибора.

    Принципиальное замечание!

    Для большей точности показаний хоть какое измерение следует повторять более 2-х раз, т. к. впервой часть тока заряда идет на создание оксидного слоя конденсатора, т. е. показания емкости немножко занижены.

    РадиоХобби 5’2000

    Перечень радиоэлементов

    Обозначение Тип Номинал Количество ПримечаниеМагазинМой блокнот DA1, DA2 МикросхемаК140УД6082 К140УД708 либо КР544Поиск в win-sourceВ блокнотVT1, VT2 Биполярный транзистор КТ315Б 2 Поиск в win-sourceВ блокнотVD2, VD3 Диодик КД521А 2 КД522Поиск в win-sourceВ блокнотС1 Электролитический конденсатор2.

    2 мкФ1 Поиск в win-sourceВ блокнотС2 Электролитический конденсатор22 мкФ1 Поиск в win-sourceВ блокнотR1 Резистор 1.

    3 Ом 1 Поиск в win-sourceВ блокнотR2, R4, R6 Подстроечный резистор100 кОм3 Поиск в win-sourceВ блокнотR3 Резистор 470 кОм 1 Поиск в win-sourceВ блокнотR5 Резистор 30 кОм 1 Поиск в win-sourceВ блокнотR7, R8 Подстроечный резистор10 кОм2 Поиск в win-sourceВ блокнотR9 Подстроечный резистор2.

    2 кОм1 Поиск в win-sourceВ блокнотR10, R11 Подстроечный резистор470 Ом2 Поиск в win-sourceВ блокнотR12, R13 Резистор 1 кОм 2 Поиск в win-sourceВ блокнотR14 Резистор 13 кОм 1 Поиск в win-sourceВ блокнотR15 Резистор 1 МОм 1 В схеме по ошибке указан как R14Поиск в win-sourceВ блокнотR16 Резистор 3 кОм 1 Поиск в win-sourceВ блокнотR17 Переменный резистор6.

    8 кОм1 Поиск в win-sourceВ блокнотVD1 Светодиод1 Поиск в win-sourceВ блокнотXP1, XS1 Разьемная пара5 выводов1 Поиск в win-sourceВ блокнотGW1 Батарея питания9 В1 Поиск в win-sourceВ блокнотSA1 Кнопка1 Сдвоенного переключенияПоиск в win-sourceВ блокнотSA2 ТумблерДва положения1 Поиск в win-sourceВ блокнотSA3 ТумблерВосемь положений1 Поиск в win-sourceВ блокнотРА1 Микроамперметр100 — 150 мкА1 Поиск в win-sourceВ блокнотДобавить все

    Скачать перечень частей (PDF)

    Оцените статью
    Просто о технологиях
    Добавить комментарии

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: