Лабораторный источник питания на igbt транзисторе

Применение igbt транзисторов в инверторе

Лабораторный источник питания на igbt транзисторе

Применение высоковольтных мощных полупроводников позволило создавать компактные производительные сварочные инверторы. Последним словом в этой области после MOSFET инверторов стали сварочные аппараты на IGBT транзисторах.

Полевые полупроводники

Используемые в инверторах полупроводники по MOSFET технологии – это полевые силовые транзисторы с изолированным затвором. Управление полупроводником осуществляется напряжением, в отличие от биполярных транзисторов, управляемых током. Канал ключа имеет высокую проводимость 1 мОм. В закрытом виде у них огромное входное сопротивление.

Изначально полевые полупроводники использовались и до сих пор применяются как ключи. В схемах импульсных источников питания применяются полевики с индуцированным затвором. В таком исполнении при нулевом напряжении на затвор-исток канал закрыт.

Для открытия ключа требуется подать потенциал определенной полярности. Для управления ключом не требуется силовых источников. Данные полупроводники часто используются в источниках питания и инверторах.

Биполярный прибор

IGBT – это биполярный транзистор с изолированным затвором, применяемый в инверторе. Фактически он состоит из двух транзисторов на одной подложке. Биполярный прибор образует силовой канал, а полевой является каналом управления.

Соединение полупроводников двух видов позволяет совместить в одном устройстве преимущества полевых и биполярных приборов. Комбинированный прибор может, как биполярный, работать с высокими потенциалами, проводимость канала обратно пропорциональна току, а не его квадрату, как в полевом транзисторе.

При этом IGBT транзистор имеет экономичное управление полевого прибора. Силовые электроды называются, как в биполярном, а управляющий получил название затвора, как в МОП приборе.

IGBT транзисторы для сварочных инверторов и силовых приводов, где приходится работать при высоких напряжениях, стали использовать, как только отладили технологию их производства. Они сократили габариты, увеличили производительность и мощность инверторов. Иногда они заменяют даже тиристоры.

В IGBT инверторе для обеспечения работы мощных переключателей применяются драйверы – микросхемы, усиливающие управляющий сигнал и ускоряющие быструю зарядку затвора.

Некоторые модели IGBT транзисторов работают с напряжением от 100 В до 10 кВ и токами от 20 до 1200 А. Поэтому их больше применяют в силовых электроприводах, сварочных аппаратах.

Полевые транзисторы больше применяют в импульсных источниках и однофазных сварочных инверторах. При токовых параметрах 400-500 В и 30-40 А они имеют лучшие рабочие характеристики. Но так как IGBT приборы могут применяться в более тяжелых условиях, их все чаще применяют в сварочных инверторах.

Применение в сварке

Простой сварочный инвертор представляет собой импульсный источник питания. В однофазном инверторном источнике питания переменный ток напряжением 220 В и частотой 50 или 60 Гц выпрямляется с помощью мощных диодов, схема включения мостовая.

Затем инвертор преобразует постоянное напряжение в переменное, но уже высокой частоты (от 30 кГц до 120 кГц). Проходя через понижающий высокочастотный трансформатор (преобразователь), напряжение понижается до нескольких десятков вольт. Потом этот ток преобразуется обратно в постоянный.

Все преобразования необходимы для уменьшения габаритов сварочного аппарата. Традиционная схема сварочного инвертора получалась надежной, но имела очень большие габариты и вес. Кроме этого, характеристики сварочного тока с традиционным источником питания были значительно хуже, чем у инвертора.

Передача электроэнергии на высокой частоте позволяет использовать малогабаритные трансформаторы. Для получения высокой частоты постоянный ток преобразуется с помощью высоковольтных, мощных силовых транзисторов в переменный частотой 50-80 кГц.

Для работы мощных транзисторов напряжение 220 В выпрямляется, проходя через мостовую схему и фильтр из конденсаторов, который уменьшает пульсации. На управляющий электрод полупроводника подается переменный сигнал с генератора прямоугольных импульсов, который открывает/закрывает электронные ключи.

Выходы силовых транзисторов подключаются к первичной обмотке понижающего трансформатора. Благодаря тому, что они работают на большой частоте, их габариты уменьшаются в несколько раз.

Силовой инверторный блок

Переменное напряжение 220 В – это некоторое усредненное значение, которое показывает, что оно имеет такую же энергию, как и постоянный ток в 220 В. Фактически амплитуда равна 310 В. Из-за этого в фильтрах используются емкости на 400 В.

Мостовая выпрямительная сборка монтируется на радиатор. Требуется охлаждение диодов, поскольку через них протекают большие токи. Для защиты диодов от перегрева на радиаторе имеется предохранитель, при достижении критической температуры он отключает мост от сети.

В качестве фильтра используются электролитические конденсаторы, емкостью от 470 мкФ и рабочим напряжением 400 В. После фильтра напряжение поступает на инвертор.

Во время переключения ключей происходят броски импульсного тока вызывающие высокочастотные помехи. Чтобы они не проникали в сеть и не портили ее качество, сеть защищают фильтром электромагнитной совместимости. Он представляет собой набор конденсаторов и дросселя.

Сам инвертор собирается по мостовой схеме. В качестве ключевых элементов применяются IGBT транзисторы на напряжения от 600 В и токи соответствующие данному инвертору.

Они тоже с помощью специальной термопасты монтируются на радиаторы. При переключениях этих транзисторов возникают броски напряжения. Чтобы их погасить применяются RC фильтры.

Полученный на выходе электронных ключей переменный ток поступает на первичную обмотку высокочастотного понижающего трансформатора. На выходе вторичной обмотки получается переменный ток напряжением 50-60 В.

Под нагрузкой, когда идет сварка, он может выдавать ток до нескольких сотен ампер. Вторичная обмотка обычно выполняется ленточным проводом для уменьшения габаритов.

На выходе трансформатора стоит еще один мощный диодный мост. С него уже снимается необходимый сварочный ток. Здесь используются быстродействующие силовые диоды, другие использовать нельзя, потому что они сильно греются и выходят из строя. Для защиты от импульсных бросков напряжения используются дополнительные RC цепи.

Мягкий пуск

Для питания блока управления инвертора применяется стабилизатор на микросхеме с радиатором. Напряжение питания поступает с главного выпрямителя через резистивный делитель.

При включении сварочного инвертора конденсаторы начинают заряжаться. Токи достигают таких больших величин, что могут сжечь диоды. Чтобы этого не произошло, используется схема ограничения заряда.

В момент пуска ток проходит через мощный резистор, который ограничивает пусковой ток. После зарядки конденсаторов резистор с помощью реле отключается, шунтируется.

Блок управления и драйвер

Управление инвертором осуществляет микросхема широтно-импульсного модулятора. Она подает высокочастотный сигнал на управляющий электрод биполярного транзистора с изолированным затвором. Для защиты силовых транзисторов от перегрузок дополнительно устанавливаются стабилитроны между затвором и эмиттером.

Для контроля напряжения сети и выходного тока используется операционный усилитель, на нем происходит суммирование значений контролируемых параметров. При превышении или понижении от допустимых значений срабатывает компаратор, который отключает аппарат.

Для ручной регулировки сварочного тока предусмотрен переменный резистор, регулировочная ручка которого выводится на панель управления.

Сварочное оборудование на IGBT транзисторах имеет наилучшие характеристики по надежности. По сравнению с полевыми ключами биполярные транзисторы с изолированными затворами имеют преимущество больше 1000 В и 200 А.

При использовании в бытовых приборах и сварочных инверторах для домашнего пользования первое место до недавнего времени оставалось за сварочным оборудованием с MOSFET полупроводниками. Эта технология давно используется и хорошо отработана. Но у нее нет перспектив роста, в отличие от оборудования на IGBT транзисторах.

Новые модели уже ничем не уступают устройствам с полевыми приборами и на малых напряжениях. Только по цене первенство остается за аппаратами с полевыми транзисторами с индуцированным затвором.

Источник питания на IGBT транзисторе

Лабораторный источник питания на igbt транзисторе

В качестве регулирующего элемента применяется IGBT-транзистор VT7. Изолированный затвор транзистора позволяет существенно снизить ток и упростить схему управления. Кроме того, IGBT-транзисторы, как правило, имеют меньшее тепловое сопротивление переход-корпус, что позволяет рассеивать большую мощность по сравнению с биполярными.

Управляющее напряжение на затвор VT7 подаётся с коллектора транзистора VT5, нагрузкой которого является источник стабильного тока 20 мА, собранный на элементах VT6, VD4, R26, R29,C14. Стабильный ток коллектора транзистора VT5 снижает влияние пульсаций питающего напряжения, что улучшает подавление пульсаций стабилизатора в целом.

Усилитель ошибки DA5 обеспечивает стабилизацию напряжения на нагрузке, поддерживая равенство между опорным напряжением 1 В, формируемым элементами DA1, C3, R2, R3 и напряжением, формируемым делителем R36, R35 и R34, R33 относительно питания +23 В.

Для компенсации сопротивления проводов +Uвых, -Uвых и измерительного шунта Rш элементы источника опорного напряжения, а также резисторы обратной связи по напряжению R33… R36 подключаются двумя дополнительными проводами +U'вых и -U'вых непосредственно к нагрузке.

Резисторы R32 и R37 обеспечивают обратную связь по напряжению при неподключенных к нагрузке цепях +U'вых и -U'вых. Стабилизация происходит следующим образом. Увеличение напряжения на нагрузке приводит к росту напряжения на резисторах R33, R34, которое через резистор R11 поступает на выв.3. ОУ DA5.

Напряжение на неинвертирующем входе ОУ уменьшается относительно инвертирующего, соответственно уменьшается напряжение на выходе DA5, что приводит к открытию транзистора VT2. Растущий ток коллектора VT2 открывает транзистор VT5, который, в свою очередь, уменьшает напряжение на затворе VT7.

Ток коллектора VT7, а значит, и напряжение на нагрузке будет уменьшаться до тех пор, пока не наступит равенство напряжений на входах ОУ DA5.

Выключатель SB1 переводит стабилизатор в режим источника стабильного тока. Во включённом положении SB1 транзистор VT3 открывается и закрывает транзистор VT2, блокируя работу усилителя ошибки DA5. Светодиод HL2 индицирует включение режима ограничения.

В этом режиме ОУ DA6 сравнивает падение напряжения на резисторах R28, R31, R38, которое пропорционально протекающему через нагрузку току с напряжением, установленным источником опорного напряжения DA3 и делителем R4…R8. Увеличение напряжения на выв. 3 ОУ DA6 относительно напряжения на выв.

2 вызывает рост напряжения на выходе ОУ и открытие транзистора VT5, который закрывая транзистор VT7 уменьшает ток, протекающий через нагрузку. Вследствие этого устанавливается баланс между опорным напряжением и напряжением на резисторах R28, R31, R38 который и приводит к стабилизации тока в нагрузке.

Стабилитрон VD5 ограничивает напряжение затвор-эмиттер на безопасном уровне, поскольку в отсутствие нагрузки в режиме стабилизации тока транзистор VT5 полностью закрыт. Схема ограничения тока работает аналогичным образом и в режиме стабилизации напряжения. Светодиод HL1 индицирует момент ограничения тока нагрузки.

Выключатель SB2 и защитный термостат, включённые последовательно, управляют питанием нагрузки, подключенной к стабилизатору. Размыкание любого из них приводит к открытию транзисторов VT4 и VT5, закрытию транзистора VT7 и снятию напряжения с нагрузки. Светодиод HL3 индицирует режим отключения нагрузки.

Стабилизатор DA4 используется для питания внешних устройств (цифровой ампервольтметр) и в работе стабилизатора не участвует. Ниже представлены схема расположения элементов на печатной плате, чертёж печатной платы и фотография устройства.

   Переменные резисторы R6, R7, R35, R36 прикручиваются к планке из фольгированного стеклотекстолита, а затем уголками крепятся к плате.

Для защиты от помех планка с резисторами соединяется с корпусом (GND) платы стабилизатора.

Настройка стабилизатора начинается с установки нижнего предела напряжения, который в данном случае совпадает с опорным. Для этого резисторы R35 и R36 выкручивают до упора против часовой стрелки – нижнее по схеме положение.

Контролируя напряжение вольтметром, и подстраивая резистор R2, на выходе стабилизатора устанавливают значение, равное +1 В. Далее, переменные резисторы R35, R36 устанавливают в обратное положение, и подстройкой резистором R34 устанавливают верхний предел диапазона +18 В.

Диапазон выходного напряжения можно настроить и на другие значения. Для нижней границы достаточно установить нужное значение опорного напряжения, а для верхней – пересчитать номиналы резисторов цепи обратной связи R33, R34, R35, R36: Umax/Umin = (R35+R36/R33+R34)+1.

При этом суммарное сопротивление резисторов R33+R34 не должно быть менее 1 кОм, поскольку выходное напряжение стабилизатора в режиме источника стабильного тока практически равно напряжению питания.

Для настройки ограничителя тока переменные резисторы R6 и R7 выкручиваются до упора по часовой стрелке – в верхнее по схеме положение. Подстроечным резистором R5 на выв. 2 ОУ DA6 предварительно устанавливается напряжение, равное +0,2 В. Далее, ручки резисторов устанавливают на минимальный ток ограничения – нижнее по схеме положение.

К выходу стабилизатора подключается внешний амперметр, светодиод HL1 должен индицировать включение режима ограничения тока. Плавно вращая ручки резисторов R6 и R7, устанавливают максимальное значение тока в нагрузке. При необходимости подстройкой резистора R5 корректируют максимальное значение тока на выходе.

Резистор R8 определяет нижнюю границу диапазона ограничения тока, и при необходимости её можно изменить, подобрав его номинал. Максимальный ток в нагрузке тоже можно изменить, используя выражение U(выв.

2 DA6)=Imax*Rш, где Rш – общее сопротивление резисторов R28, R31, R38, при этом желательно, чтобы суммарная мощность, рассеиваемая ими, не превышала 1 Вт.

IGBT транзистор VT7 можно заменить на полевой n-канальный транзистор, либо на несколько параллельно соединенных транзисторов. Для подбора замены необходимо посчитать, какая максимальная мощность будет рассеиваться на регулирующем транзисторе.

Худший вариант – низкоомная нагрузка в режиме источника тока, когда на транзистор VT7 при максимальном токе прикладывается практически всё напряжение питания, при этом на нём рассеивается мощность P = 4А*23В=92 Вт.

Далее, из спецификации на транзистор, предполагаемый для замены, выбираются следующие параметры: максимальная рабочая температура перехода (max. operating junction temperature) Tj, тепловое сопротивление переход-корпус (thermal resistance junction-to-case) Rjc, тепловое сопротивление корпус-радиатор (thermal resistance case-to-sink) Rcs.

К примеру, у транзистора IRFP044N эти параметры будут следующие: Tj=175 ºС, Rjc=1,3 ºС/W, Rcs=0,24 ºС/W. Рассчитаем предельную температуру радиатора для мощности 92 Вт и вышеуказанных параметров: Ts = Tj – P*(Rjc + Rcs) = 175 – 92*(1,3 +0,24) = 33 ºС.

На практике обеспечить столь низкую температуру радиатора практически невозможно, а поскольку её дальнейшее увеличение приведёт к выходу из строя транзистора VT7, необходимо уменьшить рассеиваемую мощность, подключив параллельно к VT7 один или два транзистора, увеличив допустимую температуру нагрева радиатора до 66 или 99 ºС.

Температура срабатывания защитного термостата (например В-1002) выбирается с учётом допустимых отклонений, которые могут достигать у последнего 10%. Изолирующие прокладки между транзистором и радиатором увеличат тепловое сопротивление Rcs, допустимая температура нагрева радиатора станет ещё меньше, так что их применение, по возможности, следует избегать.

Прикрепленные файлы:

  • Плата_под_ЛУТ.zip (48 Кб)
  • Взято с http://cxem.net/pitanie/5-273.php

Биполярные транзисторы с изолированным затвором igbt

Лабораторный источник питания на igbt транзисторе

Биполярные транзисторы с изолированным затвором igbt

     Новейшими управляемыми приборами силовой электроники являются биполярные транзисторы с изолированным затвором IGBT, что переводится как Insulated Gate Bipolar Transistor. Они появились в середине 90-х годов в каталогах компании International Rectifier и в настоящее время эти транзисторы стали выпускать все ведущие производители мощных полупроводниковых приборов.

 

     Кроме высоковольтных силовых преобразователей на мощности от нескольких киловатт, IGBT-транзисторы используются в бытовой технике для управления маломощными приводами с широким диапазоном регулирования скорости вращения, например в стиральных машинах и инверторных кондиционерах, в качестве высоковольтных ключей для электронного зажигания автомобилей, в импульсных блоках питания телекоммуникационных систем и в фотовспышках. Применение IGBT с более высокой чaстотой переключения в совокупности с микропроцессорной системой упрaвления в преобрaзовaтелях чaстоты снижaет уровень высших гaрмоник, хaрaктерных для тиристорных преобрaзовaтелей, отсюда вытекают меньшие добaвочные потери в обмоткaх и мaгнитопроводе электродвигaтеля, уменьшение нaгревa, снижение пульсaций моментa. Снижaются потери в трaнсформaторaх, конденсaторных бaтaреях, увеличивaется их срок службы и изоляции проводов, уменьшaются количество ложных срaбaтывaний устройств зaщиты и погрешности индукционных измерительных приборов. Преобрaзовaтели нa трaнзисторaх IGBT по срaвнению с тиристорными преобрaзовaтелями при одинaковой выходной мощности отличaются меньшими гaбaритaми, мaссой, более высокой нaдежностью, лучшего теплоотводa с поверхности модуля и меньшего количествa конструктивных элементов. Биполярные транзисторы с изолированным затвором IGBT, позволяют реaлизовaть более полную зaщиту от бросков токa и от перенaпряжения, что снижaет вероятность откaзов и повреждений электроприводa.

         

     IGBT, представляет собой биполярный p-n-p транзистор, управляемый от MOSFET-транзистора с индуцированным каналом. Вот эквивалентные схемы IGBT транзисторов:       

         

     Такие сборки позволяют объединить положительные качества как биполярных транзисторов – малое падение напряжения в открытом состоянии, так и MOSFET полевых транзисторов – малая мощность управления, высокие скорости коммутации.

Максимальное напряжение IGBT-транзисторов довольно велико, и уже сегодня выпускаются приборы с рабочим напряжением до 5000В. Остаточное напряжение на транзисторе во включенном состоянии не превышает пару вольт. По быстродействию силовые IGBT-приборы находятся между MOSFET-транзисторами и биполярными.

 

     Зависимость напряжения насыщения коллектор-эмиттер от напряжения затвор-эмиттер биполярного транзистора с изолированным затвором.

         

     Затвор IGBT-транзистора электрически изолирован от канала тонким слоем диэлектрика и может быть поврежден при неправильной эксплуатации или включении. Для нормального включения и перевода IGBT-транзистора в состояние насыщения необходим заряд входной емкости прибора до +15В ± 10%.

Перевод IGBT транзистора в закрытое состояние может осуществляться подачей нулевого напряжения или отрицательного, не более –20В. Максимально допустимое напряжение затвор-эмиттер не должно превышать +20В. Превышение этого напряжения может пробить изоляцию затвора. Также не следует IGBT-транзистор эксплуатировать при “подвешенном” затворе, так как возможно ложное включение.

 

     Время переключения ключей на IGBT-транзисторах лежит в пределах 100 – 1000нс., что требует обеспечивать перезаряд входной емкости в течение короткого времени с помощью токовых пиков до 5А и более. Необходимо также уменьшать отрицательную обратную связь, которая может возникнуть из-за индуктивности слишком длинного соединительного проводника к эмиттеру прибора.

Длина соединительных проводников между управляющей схемой и мощным полевым транзистором должна быть минимальной для исключения помех в цепи управления. Для соединения целесообразно использовать витую пару минимальной длины или прямой монтаж платы управляющей схемы на выводы управления транзистора.

Если не удается избежать длинных проводников в цепи затвора, то в качестве меры предосторожности необходимо включить последовательно с затвором резистор с небольшим сопротивлением в диапазоне 100 – 100 Ом.

 

     IGBT-транзисторы не очень чувствительны к электростатическе, в отличии от КМОП-приборов, так как входная ёмкость IGBT-транзисторов значительно больше и может вместить в себя большую энергию, прежде чем разряд вызовет пробой затвора, но всё-таки при транспортировке и хранении этих приборов, затвор и эмиттерный вывод должны быть закорочены перемычками.

 

      Условные графические обозначения IGBT-транзисторов, используемые различными производителями. 

         

     Подробный даташит с описанием таких приборов можно .

Параметры различных семейств биполярных транзисторов с изолированным затвором IGBT:

ТИП; Корпус; Uкэ макс,В; Uкэ вкл,В; Iк(25оC); Iк(100оC); Р,Вт
IRG4BC10K TO-220AB 600 2,62 9 5 38
IRG4BC10S TO-220AB 600 1,7 14 8 38
IRG4BC20F TO-220AB 600 2 16 9 60
IRG4BC20FD-S D2-Pak 600 1,66 16 9 60
IRG4BC20K (-S) TO-220AB 600 2,8 16 9 60
IRG4BC20S TO-220AB 600 1,6 19 10 60
IRG4BC20U TO-220AB 600 2,1 13 6,5 60
IRG4BC20W (-S) TO-220AB 600 2,6 13 6,5 60
IRG4BC30F TO-220AB 600 1,8 31 17 100
IRG4BC30K (-S) TO-220AB 600 2,7 28 16 100
IRG4BC30S (-S) TO-220AB 600 1,6 34 18 100
IRG4BC30U TO-220AB 600 2,1 23 12 100
IRG4BC30U-S D2-Pak 600 1,95 23 12 100
IRG4BC30W (-S) TO-220AB 600 2,7 23 12 100
IRG4BC40F TO-220AB 600 1,7 49 27 160
IRG4BC40K TO-220AB 600 2,6 42 25 160
IRG4BC40S TO-220AB 600 1,5 60 31 160
IRG4BC40U TO-220AB 600 2,1 40 20 160
IRG4BC40W TO-220AB 600 2,5 40 20 160
IRG4IBC20W TO-220 600 2,6 11,8 6,2 34
IRG4IBC30S TO-220 600 1,6 23,5 13 45
IRG4IBC30W TO-220 600 2,7 17 8,4 45
IRG4PC30F TO-247AC 600 1,8 31 17 100
IRG4PC30K TO-247AC 600 2,7 28 16 100
IRG4PC30S TO-247AC 600 1,6 34 18 100
IRG4PC30U TO-247AC 600 2,1 23 12 100
IRG4PC30W TO-247AC 600 2,7 23 12 100
IRG4PC40F TO-247AC 600 1,7 49 27 160
IRG4PC40K TO-247AC 600 2,6 42 25 160
IRG4PC40S TO-247AC 600 1,5 60 31 160
IRG4PC40U TO-247AC 600 2,1 40 20 160
IRG4PC40W TO-247AC 600 2,5 40 20 160
IRG4PC50F TO-247AC 600 1,6 70 39 200
IRG4PC50K TO-247AC 600 2,2 52 30 200
IRG4PC50S TO-247AC 600 1,36 70 41 200
IRG4PC50S-P SM TO-247 600 1,36 70 41 200
IRG4PC50U TO-247AC 600 2 55 27 200
IRG4PC50W TO-247AC 600 2,3 55 27 200
IRG4PC60F TO-247AC 600 1,8 90 60 520
IRG4PC60U TO-247AC 600 2 75 40 520
IRG4PSC71K TO-274AA 600 2,3 85 60 350
IRG4PSC71U TO-274AA 600 2 85 60 350
IRG4RC10K D-Pak 600 2,62 9 5 38
IRG4RC10S D-Pak 600 1,7 14 8 38
IRG4RC10U D-Pak 600 2,6 5 38
IRG4RC20F D-Pak 600 2,1 22 12 66
IRGB30B60K TO-220AB 600 2,35 78 50 370
IRGB4B60K TO-220AB 600 2,5 12 6,8 63
IRGB6B60K TO-220AB 600 1,8 13 7 90
IRGB8B60K TO-220AB 600 2,2 17 9 140
IRGS30B60K D2-Pak 600 2,35 78 50 370
IRGS4B60K D2-Pak 600 2,5 12 6,8 63
IRGS6B60K D2-Pak 600 1,8 13 7 90
IRGS8B60K D2-Pak 600 2,2 17 9 140
IRGSL30B60K TO-262 600 2,35 78 50 370
IRGSL4B60K TO-262 600 2,5 12 6,8 63
IRGSL6B60K TO-262 600 1,8 13 7 90
IRGSL8B60K TO-262 600 2,2 17 9 140

Обсуждение на   Справочники радиодеталей

Инверторный Блок питания или пускач для авто

Лабораторный источник питания на igbt транзисторе

Когда автомобиль долгое время стоит без дела, нужно его хотя бы раз в месяц заводить.

Аккумуляторная батарея хорошо снабжает электричеством автомобиль на протяжении 4-5 лет, затем она не в состоянии нормально обеспечивать электричеством машину, а также плохо заряжается от генератора или портативного зарядного устройства.

После большого опыта сборки сварочных инверторов, у меня появилась идея сделать на основе таких аппаратов устройство для запуска двигателя.

Это устройство можно использовать как с установленным аккумулятором, так и без него. С аккумуляторной батареей инверторному блоку питания будет даже легче заводить двигатель. Я пытался завести без батареи двигатель на 88 лошадиных сил. Эксперимент удался, без каких либо поломок.

На инверторе нужно настроить выходное напряжение 11,2 В. Стартер двигателя внутреннего сгорания, рассчитан на такое напряжение (10-11 В). Инверторный блок питания, который мы собираем имеет возможность стабилизации напряжения, а также функцию защиты от максимальных токов 224 А, защиту от замыкания электропроводки.

Технология IGBT, по которой разрабатывалась электрическая схема устройства, основана на принципе полного открытия и полного закрытия мощных транзисторов, которые используются в блоке. Это дает возможность как нельзя лучше минимизировать потери на ключах IGBT.

На выходе имеется возможность регулировать силу тока и напряжение за счет изменения ширины импульсов управления силовыми ключами. Так как они работают на высоких частотах, то и регулировку нужно осуществлять на частоте 56 кГц.

Такая идеализация работы возможна лишь при стабильной частоте на выходе, а также удержание ее на таких уровнях, при которых действует блок питания. В таком случае будет, изменятся, только ширина и длительность напряжения в диапазоне (0% — 45%), от ширины импульса.

Остальные 55% — это нулевой уровень напряжения на ключе управления.

Трансформатор инверторного блока имеет ферритовый сердечник. Это дает возможность подстраивать прибор на высокой частоте 56 кГц. На металлическом сердечнике не создаются вихревые токи.

IGBT транзисторы — обладают необходимой мощностью, а также не создают вокруг себя вихревых полей. Зачем же нужно создавать такие высокие частоты в блоке питания? Ответ очевиден.

При использовании трансформатора, чем выше частота напряжения, тем меньше нужно витков обмотки на сердечнике.

Еще одним плюсом высокой частоты работы, высокого КПД трансформатора, который в данном случае становит 95%, так как обмотки сердечника выполнены из толстого провода.

Трансформаторное устройство, используемое в схеме маленькое по габаритам и очень легкое. Широтное импульсное устройство (ШИМ) — создает меньше потерь, стабилизируя напряжение, в сравнении с аналоговыми элементами стабилизации. В последнем случае мощность рассеивается на мощных транзисторах.

Те люди, которые разбираются немного в радиоэлектронике, могут заметить, что трансформатор подключается к источнику питания во время тактов двумя ключами. Один подсоединяется к плюсу, другой к минусу.

Электрическая схема построения по принципу Фли Бак предусматривает подключение трансформатора с одним ключом.  Такое подключение приводит к большим потерям мощности (составляет в общей сложности порядка 10-15 % от полной мощности), так как индуктивные обмотки рассеивают энергию на резисторе.

Такие потери мощности недопустимы для построения мощных источников питания в несколько киловатт.

В приведенной схеме такой недочет устранен. Выброс энергий уходит через диоды VD18 и VD19 обратно в питание моста, что в свою очередь еще больше повышает КПД трансформатора.

Потери на дополнительном ключе становят не более 40 Ватт. Схема Фли Бак предусматривает такие потери на резисторе, которые ставят 300-200 Ватт.

Транзистор IRG64PC50W, который применяется в электрической схеме блока питания по технологии IGBT, имеет особенность быстрого открытия. В то же время скорость го закрытия намного хуже, что производит к импульсному нагреву кристалла в момент закрытия транзистора.

На стенках транзистора выделяется около 1 кВт энергии в виде тепла. Такая мощность очень большая для транзистора, что чревато перегревом.

Для снижения этой мгновенной мощности между коллектором и эмиттером транзистора включают дополнительную цепь С16 R24 VD31. Тоже самое было сделано и с верхними IGBT транзистора, которая снижает мощность на кристалле в момент закрытия. Такое внедрение приводит до повышения мощности в момент открытия ключа транзистора. Но оно происходит практически мгновенно.

В момент открытия IGBT конденсатор С16 разряжается через резистор R24. Зарядка происходит в момент закрытия транзистора через быстрый диод VD3. Как следствие этого, затягивается формат подъема напряжения. Пока закрывается IGBT – снижается выделяемая мощность на ключе транзистора.

Такое изменение электрической цепи отлично справляется с резонирующими выбросами трансформатора, тем самым не позволяя напряжению выше 600 вольт через ключ.

IGBT – это составной трансформатор, который состоит из полевого и биполярного транзистора с переходом. Полевой транзистор выступает тут в качестве главного.

Для того, чтобы им управлять требуются прямоугольные импульсы с амплитудой не меньше 12 В, а также не больше 18 В. На этом участке цепи включены специальные оптроны (HCPL3120 или HCPL3180).

Возможная импульсная рабочая нагрузка составляет 2 А.

Оптрон работает таким образом. В том случае, когда появится напряжение на светодиоде оптрона, входы 1,2,3 и 4 – запитаны. На выходе мгновенно формируется мощный импульс тока с амплитудой 15,8 В. Уровень импульса ограничен резисторами R55 и R48.

Когда напряжение на светодиоде пропадает, наблюдается спад амплитуды, который открывает транзистор Т2 и Т4. Таким образом создается ток более высокого уровня на резисторах R48 и R58, а также происходит быстрая разрядка конденсатора ключа IGBT.

Мост вместе с драйверами на оптронах собираем на базе радиатора от компьютера Pentium 4, у которого плоское основание. На поверхность радиатора перед установкой транзисторов необходимо нанести термопасту.

Радиатор нужно распилить на две части таким образом, чтобы верхний и нижний ключ не имели электрического контакта между собой. Диоды крепятся к радиатору специальными слюдяными прокладками. Все силовые соединения устанавливаем с помощью применения навесного монтажа. На шину питания понадобится припаять 8 штук пленочных конденсаторов по 150 нФ каждый и максимальным напряжением 630 В.

Выходная обмотка силового трансформатора и дроссель

Так как выходные напряжения без нагрузки достигают 50 В, его нужно необходимо было выпрямить с помощью диодов VD19 и VD20. Затем нагрузочное напряжение поступает на дроссель с помощью которого происходит сглаживание и деление напряжения пополам.

Во время когда IGBT транзисторы открыты наступает фаза насыщения дросселя L3. Когда IGBT находится в закрытом состоянии, наступает фаза разрядки дросселя. Разрядка происходит через замыкающий цепь диод VD22  и VD21. Таким образом ток который поступает на конденсатор выпрямляется.

Стабилизация и ограничение тока при широтноимпульсной модуляции

Устройство, о котором далее пойдет речь – мозг блока питания ИС2845. Он создает рабочий такт с измененяемой шириной импульса, в зависимости от входного напряжения в точках входа 1 и 2, а также тока на входе 3.

2 – это вход для усиления напряжения, 1 – выход усилителя. Усилитель изменяет рабочий ток инвертора, а также ширину импульса. Дискретные изменения создают нагрузочную характеристику в зависимости от напряжения обратной связи между блоком питания и входом микросхемы. На выводе 2 микросхемы поддерживается напряжение 2,5 В.

Ширина рабочего импульса зависит от напряжения на входе 2 микросхемы. Ширина импульса становится шире, если напряжение больше 2,5 В. Если же напряжение меньше указанного, то ширина зауживается.

Стабильность работы блока питания зависит от резисторов R2 и R1. Если напряжение сильно проседает вследствие больших выходных токов, то необходимо увеличить сопротивление резистора R1.

Иногда бывает, что в процессе настройки блок начинает издавать некие жужжащие звуки. В таком случае необходимо регулировать резистор R1 и емкости конденсаторов С1 и С2. Если даже такие меры не в состоянии помочь, можно попробовать уменьшить количество витков дросселя С3.

Трансформатор должен работать тихо, иначе сгорят транзисторы. Если даже все вышеперечисленный меры не помогли, нужно добавить несколько конденсаторов по 1 мкФ на три канала БП.

Плата силовых конденсаторов 1320 мкФ

Во время включения блока питания в сеть с напряжением 220 В, происходит скачок тока, после чего выходят из строя диодная сборка VD8, во время зарядки емкости конденсатора.

Для предотвращения такого эффекта нужно установить резистор R11. Когда конденсаторы зарядятся, таймер на нулевом транзисторе даст команду сомкнуть контакты и зашунтировать реле.

Теперь нужный по величине рабочий ток поступает на электрический мост с трансформатором.

Таймер на VT1 размыкает контакты реле К2, что позволяет использовать процесс широтноимпульсной модуляции.

Настройка блока

Первым делом необходимо подать напряжение в 15 В на силовой мост, проследить правильную работы моста а также монтаж элементов. Далее можно запитать мост напряжением сети, в разрыв между +310 В, где расположены конденсаторы 1320 мкФ и конденсатор с емкостью 150 нФ, поставить лампочку на 150-200 Ватт.

Затем подключаем к электрической цепи осфилограф на коллектор-эмиттер нижнего силового ключа. Нужно убедится, что выбросы расположены в нормальной зоне, не выше 330 В. Далее выставляем тактовую частоту ШИМа.

Нужно понижать частоту до тех пор, пока не появится на осциллограмме маленький изгиб импульса, который свидетельствует о перенасыщении трансформатора.

Рабочая тактовая частота трансформатора рассчитывается таким образом: сначала измеряем тактовую частоту перенасыщения трансформатора, делим ее на 2 и результат прибавляем к частоте, на которой произошел изгиб импульса.

Затем нужно запитать мост через чайник, мощностью 2 кВт. Отсоединяем обратную связь ШИМ по напряжению, подаем регулируемое напряжение на резистор R2 в месте соединения его с стабилитроном D4 от 5 В до 0, тем самым регулируя ток замыкания от 30 А и до 200 А.

Настраиваем напряжение на минимум, ближе к 5 В, отпаиваем конденсатор С23, замыкаем выход блока. Если вы услышали звон, необходимо пропустить провод в другую сторону. Проверяем фазировку обмоток силового трансформатора. Подключаем осциллограф на нижний ключ и увеличиваем нагрузку, чтобы не было звона, или даже всплеска напряжения выше 400 В.

Измеряем температуру радиатора моста, чтобы радиатор нагревался равномерно, что свидетельствует о качественных мостах. Подключаем обратную связь по напряжению. Ставим конденсатор С23, измеряем напряжение, чтобы оно находилось в пределах 11-11,2 В. Нагружаем источник питания небольшой нагрузкой, величиной в 40 Ватт.

Настраиваем тихую работу трансформатора, изменяя количество витков дросселя L3. Если и это не помогает, увеличиваем эмкость конденсатора С1 и С2, или же размещаем плату ШИМ подальше от помех силового трансформатора.

СКАЧАТЬ…печатные платы в формате LAY

Завантажити відео, дивитися безкоштовно

Лабораторный источник питания на igbt транзисторе

7:22

Переглядів 6 797 129 94%

2:29

LITTLE BIG – AK-47 (music video)

Переглядів 4 474 143 91%

13:08

Что если затопить блютус колонку?

Переглядів 556 509 83%

12:00

Что делать, когда скучно – 12 идей!

Переглядів 688 618 85%

10:03

Переглядів 546 084 57%

50:35

“Канцелярская крыса”. 1 серия

Переглядів 535 942 82%

1:31

Кто придумал Сепаров и Бандеровцев

Переглядів 170 733 96%

3:49

KAZKA — ПЛАКАЛА [OFFICIAL VIDEO] ПРЕМ`ЄРА

Переглядів 725 434 96%

12:23

НАСТОЯЩИЕ ГЕРОИ НАШЕГО ВРЕМЕНИ #1

Переглядів 1 332 028 98%

4:10:06

Недільне ВАТА ШОУ Андрій Полтава

Переглядів 202 726 79%

3:36

Моя Извращенная Учительница

Переглядів 626 862 76%

23:16

Однажды под Полтавой. Брачный контракт. 10 серия

Переглядів 74 571 0%

31:31

ЗАШКВАРНЫЕ ИСТОРИИ 2 сезон: Настя Ивлеева

Переглядів 3 926 991 92%

45:58

У прошлого в долгу! (Серия 10)

Переглядів 154 990 77%

10:50

Сквиши против реальной еды! Челлендж – 8 идей

Переглядів 1 170 692 92%

7:58

МОИ АРМЕЙСКИЕ ПОХОЖДЕНИЯ… (анимация)

Переглядів 416 280 98%

3:12

NK — PELIGROSO [OFFICIAL LYRIC VIDEO]

Переглядів 1 055 593 93%

6:18

ONUKA – STRUM (Official Music Video)

Переглядів 205 773 0%

47:22

Коли ми вдома. 5 сезон – 2 серия. Нова історія 2

Переглядів 31 139 89%

3:19

Lil Peep & XXXTENTACION – Falling Down

Переглядів 24 568 876 98%

4:27

Переглядів 2 034 502 27%

59:46

60 минут по горячим следам от 25.09.2018

Переглядів 269 258 58%

11:41

9 САМЫХ КРУТЫХ ДЕТЕЙ В МИРЕ!

Переглядів 1 189 995 96%

12:15

КАТАЕМСЯ В HEELYSах ПО ШКОЛЕ!!!ВСЕ НАКАЗАНЫ!!!

Переглядів 2 598 455 84%

10:27

12 самых КРАСИВЫХ ПРИНЦЕСС древности

Переглядів 334 000 93%

23:51

ДЕЛАЕМ ПРОСТОКВАШИНО ЕЩЁ ЛУЧШЕ

Переглядів 555 827 94%

25:29

Корыто за 280 тр для наивной девочки.

Переглядів 802 739 97%

21:02

Переглядів 350 408 98%

13:53

Андрей Пионтковский – У ПУТИНА НАЧАЛАСЬ ПАНИКА!

Переглядів 185 710 92%

2:15

КОРОЧЕ ГОВОРЯ, Я ОПТИМИСТ – ТимТим.

Переглядів 754 544 96%

4:55

Переглядів 112 598 95%

3:04

Мот – Она не твоя (премьера трека, 2018)

Переглядів 1 382 639 96%

36:17

Переглядів 91 577 82%

47:55

Ускользающая жизнь – Серия 1 /2018 / Сериал / HD

Переглядів 158 818 87%

10:03

!ОПАСНО! ЗАЛИВАЕМ РУЛЕТ КИПЯЩИМ МАСЛОМ!

Переглядів 417 310 92%

2:15

Капитан Марвел — Русский тизер-трейлер (2019)

Переглядів 1 477 851 92%

3:58

МАРМАЖ: ЗАБЫТОЕ И НЕ ВОШЕДШЕЕ (анимация)

Переглядів 282 790 97%

7:22

ЗАСМЕЯЛИСЬ ИЛИ УЛЫБНУЛИСЬ – ПроКЕКали ! )

Переглядів 960 806 95%

7:28

Топ10 Дорогих ИДИОТСКИХ Вещей!

Переглядів 273 523 93%

3:36

Переглядів 578 599 73%

6:59

Рутина настоящего игромана

Переглядів 818 361 96%

4:02

THE HARDKISS – Koxaнці (official audio)

Переглядів 469 409 98%

Управление силовыми ключами MOSFET и IGBT

Лабораторный источник питания на igbt транзисторе

by Radiolomator · 09.02.2015

Раз уж на нашем сайте появились статьи о ШИМ и регулировании мощности нагрузки с помощью микроконтроллеров, то нельзя обойти стороной тему об управлении силовыми ключами. Именно силовые ключи (транзисторы) являются финальным звеном в схеме регулирования мощности нагрузки, примеры схем приведены в статьях об электроприводе постоянного тока.

В настоящее время в качестве силовых ключей большой и средней мощности применяются в основном MOSFET и IGBT транзисторы. Если рассматривать эти транзисторы как нагрузку для схемы их управления, то они представляют собой конденсаторы с ёмкостью в тысячи пикофарад. Для открытия транзистора, эту ёмкость необходимо зарядить, а при закрывании – разрядить, и   как можно быстрее.

Сделать это нужно не только для того, чтобы ваш транзистор успевал работать на высоких частотах. Чем выше напряжение на затворе транзистора, тем меньше сопротивления канала у MOSFET или меньше напряжение насыщения коллектор-эмиттер у IGBT транзисторов.

Пороговое значение напряжения открытия транзисторов обычно составляет 2 – 4 вольта, а максимальное при котором транзистор полностью открыт 10-15 вольт. Поэтому следует подавать напряжение 10-15 вольт.

Но даже в таком случае ёмкость затвора заряжается не сразу и какое-то время транзистор работает на нелинейном участке своей характеристики с большим сопротивлением канала, что приводит к большому падению напряжения на транзисторе и его чрезмерному нагреву. Это так называемое проявление эффекта Миллера.

Для того чтобы ёмкость затвора быстро зарядилась и транзистор открылся, необходимо чтобы ваша схема управления могла обеспечить как можно больший ток заряда транзистора. Ёмкость затвора транзистора можно узнать из паспортных данных на изделие и при расчете следует принять Свх = Сiss.

Для примера возьмём MOSFET – транзистор IRF740. Он обладает следующими интересующими нас характеристиками:

Время открытия (Rise Time — Tr) = 27 (нс)

Время закрытия (Fall Time — Tf) = 24 (нс)

Входная ёмкость (Input Capacitance — Сiss) = 1400 (пФ)

Максимальный ток открытия транзистора рассчитаем как:

Максимальный ток закрытия транзистора определим по тому же принципу:

Так как, обычно мы используем для питания схемы управления 12 вольт, то токоограничивающий резистор определим используя закон Ома.

То есть, резистор Rg=20 Ом, согласно стандартному ряду Е24.

Заметьте, что управлять таким транзистором напрямую от контроллера не получится, введу того, что максимальное напряжение, которое может обеспечить контроллер, будет в пределах 5 вольт, а максимальный ток в пределах 50 мА.

Выход контроллера будет перегружен, а на транзисторе будет проявляться эффект Миллера, и ваша схема очень быстро выйдет из строя, так как кто-то, или контроллер, или транзистор, перегреются раньше. Поэтому необходимо правильно подобрать драйвер.

Драйвер представляет собой усилитель мощности импульсов и предназначен для управления силовыми ключами. Драйверы бывают верхнего и нижнего ключей в отдельности, либо объединенные в один корпус в драйвер верхнего и нижнего ключа, например, такие как IR2110 или IR2113.

Исходя из информации изложенной выше, нам необходимо подобрать драйвер, способный поддерживать ток затвора транзистора Ig = 622 мА.

Таким образом, нам подойдёт драйвер IR2011 способный поддерживать ток затвора Ig = 1000 мА.

Так же необходимо учесть максимальное напряжение нагрузки, которое будут коммутировать ключи. В данном случае оно равно 200 вольт.
Следующим, очень важным параметром является скорость запирания. Это позволяет устранить протекание сквозных токов в двухтактных схемах, изображенной на рисунке ниже, вызывающие потери и перегрев.

Если вы внимательно читали начало статьи, то по паспортным данным транзистора видно, что время закрытия должно быть меньше времени открытия и соответственно ток запирания выше тока открытия If>Ir.

Обеспечить больший ток закрытия, можно уменьшив сопротивление Rg, но тогда также увеличится и ток открытия, это повлияет на величину коммутационного всплеска напряжения при выключении, зависящего от скорости спада тока di/dt.

С этой точки зрения повышение скорости коммутации является в большей степени негативным фактором, снижающим надежность работы устройства.

В таком случае воспользуемся замечательным свойством полупроводников, пропускать ток в одном направлении, и установим в цепи затвора диод, который будет пропускать ток запирания транзистора If.

Таким образом, отпирающий ток Ir будет протекать через резистор R1, а запирающий ток If — через диод VD1, а так как сопротивление p – n перехода диода намного меньше, чем сопротивление резистора R1, то и If>Ir. Для того чтобы ток запирания не превышал своего значения, последовательно с диодом включим резистор, сопротивление которого определим пренебрегая сопротивлением диода в открытом состоянии.

Возьмем ближайший меньший из стандартного ряда Е24 R2=16 Ом.

Теперь рассмотрим, что же обозначает название драйвера верхнего и драйвера нижнего ключа. Известно, что MOSFET и IGBT транзисторы управляются напряжением, а именно напряжением заствор-исток (Gate-Source) Ugs.

Что же такое верхний и нижний ключ? На рисунке ниже приведена схема полумоста. Данная схема содержит верхний и нижний ключи, VT1 и VT2 соответственно.

Верхний ключ VT1 подключен стоком к плюсу питания Vcc, а истоком к нагрузке и должен открываться напряжением приложенным относительно истока.

Нижний же ключ, стоком подключается к нагрузке, а истоком к минусу питания (земле), и должен открываться напряжением, приложенным относительно земли.

И если с нижним ключом все предельно ясно, подал на него 12 вольт – он открылся, подал на него 0 вольт — он закрылся, то для верхнего ключа нужна специальная схема, которая будет открывать его относительно напряжения на истоке транзистора.

Такая схема уже реализована внутри драйвера. Все что нам нужно, это добавить к драйверу бустрептную ёмкость С2, которая будет заряжаться напряжением питания драйвера, но относительно истока транзистора, как это изображено на рисунке ниже.

Именно этим напряжением и будет отпираться верхний ключ.

Данная схема вполне работоспособна, но использование бустрептной ёмкости позволяет ей работать в узких диапазонах.

Эта ёмкость заряжается, когда открыт нижний транзистор и не может быть слишком большой, если схема должна работать на высоких частотах, и так же не может быть слишком маленькой при работе на низких частотах.

То есть при таком исполнении мы не можем держать верхний ключ бесконечно открытым, он закроется сразу после того как разрядится конденсатор С2, если же использовать ёмкость побольше, то она может не успеть перезарядится к следующему периоду работы транзистора.

Мы не раз сталкивались с данной проблемой и очень часто приходилось экспериментировать с подбором бустрептной ёмкости при изменении частоты коммутации или алгоритма работы схемы. Проблему решили со временем и очень просто, самым надежным и «почти» дешевым способом. Изучая Technical Reference к DMC1500, нас заинтересовало назначение разъёма Р8.

Почитав внимательно мануал и хорошо разобравшись в схеме всего привода, оказалось, что это разъём для подключения отдельного, гальванически развязанного питания. Минус источника питания мы подключаем к истоку верхнего ключа, а плюс ко входу драйвера Vb и плюсовой ножке бустрептной ёмкости.

Таким образом, конденсатор постоянно заряжается, за счет чего появляется возможность держать верхний ключ открытым на столько долго, на сколько это необходимо, не зависимо от состояния нижнего ключа. Данное дополнение схемы позволяетреализовать любой алгоритм коммутации ключей.

В качестве источника питания для заряда бустрептной ёмкости можно использовать как обычный трансформатор с выпрямителем и фильтром, так и DC-DC конвертер.

Исполнительный модуль на IGBT транзисторе для нагрузки повышенной мощности

Лабораторный источник питания на igbt транзисторе

Переключение напряжения порядка несколько сотен вольт представляет собой определенную техническую проблему. Если к этому добавить значительный ток, проходящий через ключ, дело становится еще сложнее. Именно для таких целей предназначены транзисторы IGBT (Insulated Gate Bipolar Transistor)

Приведенная в данной статье схема предназначена для включения и отключения DC нагрузки с напряжением питания до 600 В и токе 27 А, так как ровно столько способен выдержать транзистор типа IRG4PC50U.

Ниже приведены максимальные параметры IRG4PC50U по datasheet:

IGBT транзисторы имеют определенную особенность, которая отличает их от транзисторов типа MOSFET, а именно в состоянии насыщения они характеризуются постоянным напряжением UCEsat из-за низкого сопротивления открытого канала (RDS(on)). Транзисторы типа MOSFET, приспособленные для работы при высоких напряжениях, характеризуются относительно большим сопротивлением открытого канала (несколько сотен миллиомов, обычно 0,3…1 Ом).

Потери мощности на резисторе, за который можно принять открытый канал, прямо пропорциональны квадрату тока, проходящего через него. Значение предельного тока можно вычислить по формуле, полученной после нескольких несложных преобразований:

I = UCEsa / RDS(on)

В нашем случае для IRG4PC50U транзистора: при UCEsa = 1,65 В значение предельного тока находиться в диапазоне 1,65…5,5 А. Это относительно небольшой ток, учитывая возможности транзистора IGBT. Например, при протекании через транзистор MOSFET ток 20 А, потери на нем составят 120…400 Вт, в то время как на IGBT только 33 Вт.

Схема исполнительного модуля представлена на рисунке ниже.

Драйвер для IRG4PC50U построен с использованием TLP250, содержащий опторазвязку между входом и выходом. Включение мощного транзистора происходит путем подачи напряжения на выводы 1 и 2 TLP250.

Резистор R2 ограничивает ток затвора T1 во время перегрузки. Резистор R3 замыкает затвор, что предотвращает случайное включение транзистора при отсутствии напряжения питания TLP250. Диоды D2 и D3, ограничивают напряжение затвор-эмиттер до безопасной величины (ок. ±16 В), которая в подавляющем большинстве IGBT транзисторов составляет ±20 В.

Резистор R1 ограничивает ток, протекающий через светодиод в TLP250 до значения около 8 мА при входном напряжении на уровне 5 В. Конденсатор C5 является элементом рекомендованным производителем, который стабилизирует работу внутреннего операционного усилителя. Диод D4 предохраняет транзистор от пикового напряжения противоположной полярности.

Вся схема собрана на односторонней печатной плате размером 61 мм×61 мм. Транзистор Т1 и диод D4 должны быть установлены на радиатор. Следует обеспечить гальваническую изоляцию между металлическими вставками, этих элементов. Дорожки, идущие к разъемам J3 и J4 следует сделать массивными, если по ним будет протекать большой ток.

Схему следует питать от двухполярного блока питания с напряжением ±12…15 В. Допускается, однако, использование однополярного блока питания с напряжением в диапазоне 12…15 В. Его следует присоединить к клеммам „+” и „GND” разъема J2, а вывод „–” соедините с „GND”, при этом элементы C2 и C4, то, по понятным причинам, не нужны.

Данный исполнительный модуль необходимо, со стороны выхода, рассматривать как схему с общим эмиттером: к разъему J3 присоединяется более низкий потенциал, а к J4 более высокий. Питание TLP250 и эмиттер транзистора гальванически связаны между собой.

Share: