Мигающий светодиод от 220в

Содержание
  1. Мигающий светодиод от 220 вольт
  2. Как подключить светодиод к 220в: схемы, ошибки, нюансы, видео
  3. Основы подключения к 220 В
  4. Способы подключения светодиода к сети 220 В
  5. Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более)
  6. Шунтирование светодиода обычным диодом
  7. Встречно-параллельное подключение двух светодиодов:
  8. Нюансы подключения к сети 220 В
  9. Безопасность при подключении
  10. Заключение
  11. Схемы подключения светодиодов к 220В и 12В
  12. Типы схем
  13. Обозначение на схеме
  14. Подключение светодиода к сети 220в, схема
  15. Подключение к постоянному напряжению
  16. Самый простой низковольтный драйвер
  17. Драйвера с питанием от 5В до 30В
  18. Включение 1 диода
  19. Параллельное подключение
  20. Последовательное подключение
  21. Подключение RGB LED
  22. Включение COB диодов
  23. Подключение SMD5050 на 3 кристалла
  24. Светодиодная лента 12В SMD5630
  25. Светодиодная лента RGB 12В SMD5050
  26. Подключение светодиода к сети 220 Вольт
  27. В чем заключается разница подключения
  28. Способы подключения к переменному току
  29. Применение в быту
  30. Техника безопасности
  31. Заключение
  32. Лучший вариант схемы питания светодиода от 220 вольт. Как подключить светодиод индикатор к сети, работающий от напряжения 220 В, как сделать, спаять самому
  33. Тема: рабочий вариант электрической схемы запитки светового диода от 220 V
  34. Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)
  35. Принцип понижения напряжения питания для светодиода
  36. Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)
  37. Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор + резистор)
  38. Схема подключения светодиода к напряжению 220 вольт (резистор)
  39. Подключение нескольких светодиодов к 220 вольтам
  40. Видео о подключении светодиода к сети 220 вольт
  41. Светодиоды с прямым питанием от 220В — DRIVE2
  42. Подключаем светодиод через резистор и напрямую
  43. Использование тестирующих устройств
  44. Визуальное определение полярности
  45. Подключение к источнику питания
  46. Этапы сборки
  47. Источники питания
  48. Как подключить светодиод
  49. К 1,5 В
  50. К 5 В
  51. К 9 В
  52. К 12 В
  53. К 220 В
  54. Питание светодиодов от 220 В своими руками
  55. Как подключить светодиод к 220 вольт
  56. Расчет питания светодиода
  57. Варианты подключения светодиодов к сети
  58. Подключение светодиода к сети 220В
  59. Схема включения светодиода в сеть 220 вольт
  60. Описание
  61. Электрические свойства светодиода
  62. Видео по теме
  63. Ошибки подключения светодиодов
  64. Схема включения мощного светодиода
  65. Светодиоды 5050. Характеристики. Схема включения
  66. Схемы включения мигающих светодиодов
  67. Низковольтные мигающие светодиоды
  68. Монтаж светодиодов
  69. Схема плавного включения светодиодов
  70. Поочередное включение светодиодов. Схема

Мигающий светодиод от 220 вольт

Мигающий светодиод от 220в

Это, вероятно, простейшая схема для создания мигающего светодиода от 220 вольт. Схема может быть применена в качестве индикатора сетевого напряжения.

В схеме мигающего светодиода использован динистор DB3 (DIAC). Динистор, как правило, используется в качестве генератора импульсов для управления тиристором или симистором. Когда на динистор подано напряжение ниже напряжения пробоя, то он не пропускает через себя ток (фактически получается обрыв цепи) и только очень незначительный ток проходит через него.

Но если напряжение возрастает до порога пробоя, то это переводит динистор в состояние электропроводности. Для динистора DB3 напряжение пробоя составляет около 35 вольт. Динистор DB3 проводит ток в обоих направлениях. Диод VD1 выпрямляет переменное напряжение сети. Резистор R1 предназначен для ограничения тока протекающего через динистор DB3.

При подаче питания на схему светодиод не горит. Конденсатор С1 начинает заряжаться через диод VD1 и резистор R1. Когда конденсатор С1 зарядится до напряжения около 35 вольт, происходит пробой динистора, ток начинает течь через него, в результате чего светодиод загорается. Резистор R2 ограничивает ток через светодиод до безопасного значения 30 мА.

Когда DB3 пропускает через себя ток, в это время конденсатор С1 разряжается, напряжение на нем опускается ниже напряжения пробоя динистора, в результате чего последний закрывается и светодиод гаснет. Затем все повторяется вновь. И как результат – светодиод начинает периодически мигать.

Частота вспышек светодиода определяется емкостью конденсатора С1. Более высокое его значение дает низкую частоту вспышек и наоборот. Если динистор не открывается, то можно уменьшить сопротивление R1 до 10 кОм, но мощность R1 в этом случае должна быть не менее 5 Вт.

Второй вариант мигающего светодиода от 220 вольт. Здесь переменное сетевое напряжение 220 вольт снижается до 50 вольт, за счет гасящего конденсатора C1, и выпрямляется диодным мостом VD1-VD4. Резистор R1 предназначен для защиты конденсатора от пускового тока и разряда его после отключения схемы от сети.

Основным элементом схемы является динистор DB3. Динистор вместе с конденсатором C2 образует релаксационный генератор. При подаче напряжения, конденсатор С2 начинает медленно заряжаться через резистор R3.

При достижении на конденсаторе напряжения равного напряжению пробоя динистора (примерно 35В), динистор начинает проводить ток, включая светодиод. Далее происходит разряд конденсатора С2 и динистор закрывается, светодиод гаснет. И цикл повторяется вновь.

При указанной емкости конденсатора С2 частота вспышек светодиода составляет примерно 1 раз в секунду.

Внимание: обе схемы напрямую связаны с электросетью 220 вольт и не имеют гальваническую развязку. Будьте крайне осторожны при сборке и эксплуатации данного устройства.

Как подключить светодиод к 220в: схемы, ошибки, нюансы, видео

Мигающий светодиод от 220в

Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.

Основы подключения к 220 В

В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:

То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.

В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.

Способы подключения светодиода к сети 220 В

Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.

Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более)

Рассмотрим схему подключения более подробно.

В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.

Такой вариант подключения наглядно показан в этом ролике:

Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.

Шунтирование светодиода обычным диодом

Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.

Встречно-параллельное подключение двух светодиодов:

Схема подключения выглядит следующим образом:

Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.

Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.

Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:

9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.

То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.

Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.

В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.

Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора.

Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1.

R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.

Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.

Емкость конденсатора рассчитывается по эмпирической формуле:

где U – амплитудное напряжение сети (310 В),

I – ток, проходящий через светодиод (в миллиамперах),

Uд – падение напряжения на led в прямом направлении.

Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:

Нюансы подключения к сети 220 В

При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:

Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока.

При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время.

Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.

Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:

При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.

Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:

В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.

Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:

Здесь показано, почему нельзя:

  • включать светодиод напрямую;
  • последовательно соединять светодиоды, рассчитанные на разный ток;
  • включать led без защиты от обратного напряжения.

Безопасность при подключении

При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению.

Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам.

Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.

В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.

Заключение

Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации.

Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя.

В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.

Схемы подключения светодиодов к 220В и 12В

Мигающий светодиод от 220в

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В.

Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение.

Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

В первом варианте применяется специализированный  источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения  необходимо использовать токоограничивающий резистор.
Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Разница кристаллов

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления.

Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и  затем понижаем напряжение до тех пор, когда они будут едва светиться.

Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены.  Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  • простая на гасящем конденсаторе;
  • полноценная с использованием микросхем стабилизатора;
  • Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется.

    Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают.

    Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

    Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а  в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была  не с питанием.

    Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера.

    Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока.

    Единственное нельзя превышать указанную  мощность.

    Подключение к постоянному напряжению

    Далее будут рассмотрены  схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный  полярным напряжением на выходе. Несколько примеров:

  • 3,7В – аккумуляторы от телефонов;
  • 5В – зарядные устройства с USB;
  • 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  • 19В – блоки от ноутбуков, нетбуков, моноблоков.
  • Самый простой низковольтный драйвер

    Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

    Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.

    Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

    Драйвера с питанием от 5В до 30В

    Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие.  Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

    В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

    Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

    Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

    Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

    Включение 1 диода

    Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

    Параллельное подключение

    При параллельном соединении  желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность.

    Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся.

    На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

    Рациональность применений каждого способа  рассчитывают исходя из требований к изделию.

    Последовательное подключение

    Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт.  В длинной цепочке из 60-70 LED на каждом  падает 3В, что и позволяет подсоединять напрямую  к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

    Такое соединение применяют в любой светотехнике:

  • светодиодные лампах для дома;
  • led светильники;
  • новогодние гирлянды на 220В;
  • светодиодные ленты на 220.
  • В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

    Подключение RGB LED

    Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

    Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

    Включение COB диодов

    Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

    Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

    Подключение SMD5050 на 3 кристалла

    От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов  белого света, поэтому имеет 6 ножек.  То есть он равен трём SMD2835, сделанным на этих же кристаллах.

    При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

    При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

    Светодиодная лента 12В SMD5630

    Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

    Светодиодная лента RGB 12В SMD5050

    В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

    Подключение светодиода к сети 220 Вольт

    Мигающий светодиод от 220в

    В декоративном освещении и прочих местах, где светодиод используется как источник света, принято подключать его через драйвер. Драйвер уже имеет необходимые параметры для бесперебойной и максимально эффективной работы светодиода. Он актуален в тех случаях, когда в цепи наличествует несколько мощных кристаллов или целый набор светодиодных лент.

    Подключение светодиода напрямую к напряжению 220 В используется в том случае, когда LED будет выглядеть как слабенький индикатор – если в подключении участвуют один или несколько элементов. Для них покупка драйвера совершенно нецелесообразна. В данном материале описана разница подключения через драйвер и к сети 220 В напрямую, а также показаны и объяснены схемы подключения различных типов.

    В чем заключается разница подключения

    Как подключить светодиод к сети 220 В? Проблема изначально кроется в технических характеристиках LED. Его работа основана на пропускании сквозь кристаллы определенного тока, вследствие чего они светят. Драйвер призван контролировать подачу тока на кристалл, ограничивая ее тем количеством, которое необходимо конкретно для этих моделей подключаемых светодиодов.

    Пример подключения драйвера
    для декоративной подсветки светодиодами

    Ключевой особенностью драйвера является подача на светодиод постоянного тока, а не переменного, который протекает в обычной бытовой розетке.

    Переменный ток 220 В подает на кристаллы синусоподобное напряжение с частотой 50 Гц. Это означает, что его направление меняется 50 раз в секунду.

    При этом если включить светодиод, он будет светиться только при основной подаче тока и гаснуть при обратной. На схеме это выглядит так.

    Зависимость свечения кристалла
    от направления переменного тока

    Глядя на график, становится понятно, что LED не будет светить постоянно, а будет мигать с такой же частотой, как и сам ток – 50 раз в минуту. Для человеческого глаза такое мерцание не различимо, и он будет видеть обычный равномерный свет. Но это не значит, что подключение светодиода к сети выполнено правильно.

    Светодиод способен пропускать ток только в одном направлении, обратные колебания приводят к разрушению его структуры и последующей деградации. Для того чтобы светодиод не вышел из строя, к нему необходимо применять защитные меры.

    Способы подключения к переменному току

    Номинал резистораПростым и дешевым способом будет использование гасящего резистора, который включается в электрическую цепь, представляющую собой последовательное соединение светодиодов. Номинальной мощностью ограничительного резистора будет значение, которое рассчитывается по следующей формуле:

    где: 0,75 – коэффициент надежности LED (теоретическое, конкретное узнавать у производителя);

    Uпит – напряжение источника тока;

    Uпад – напряжение, падающее на диоде и вызывающее свечение кристалла;

    I – номинальный проходной ток.

    При этом помните, что за напряжение источника тока следует принимать не 220 В, а амплитудный параметр 310 В. Это обязательно нужно учитывать для правильности выходных параметров при выполнении расчета.

    После включения резистора в цепь появляется достаточно сильное сопротивление, которое сопровождается ощутимым выделением тепла – ведь падающее напряжение должно куда-то преобразовываться. Поэтому важным параметром при подборе резистора является его мощность, которая рассчитывается по формуле:

    где: U – разность сетевого и падающего напряжений.

    Подключение резистора, выполненное своими руками, сгладит резкую амплитуду переменного тока и позволит подключать светодиоды к сети 220 вольт. Но даже после его подключения все равно остается обратное напряжение такой же силы, поэтому для обеспечения безопасности кристалла выполняется еще несколько операций.

    Подключение диода с высоким порогом обратного пробоя. Это самый простой и эффективный способ защитить LED от тока обратного направления. Смысл в том, что этот диод имеет колоссальное сопротивление на обратное направление, пропуская ток в одну сторону и не давая ему пройти в другую. На схеме это выглядит так:

    Защита светодиодов от обратного напряжения диодом

    Здесь не нужно выполнять расчет – обратное напряжение такого диода должно превышать указанные выше 310 В. При изменении направления тока все напряжение будет приложено только к нему. Практика показывает, что чем больше будет его сопротивление, тем надежнее он защитит LED. Оптимальный параметр приближается к 1 000 В.

    Встречно-параллельное включение светодиода и обычного диода. В отличие от обратного диода, резистор гасит напряжение в обоих направлениях.

    Смысл данного способа заключается в том, чтобы обратную амплитуду направить сразу на установленный ранее резистор, который и заглушит его.

    Учтите, что для такой схемы ранее рассчитанные параметры резистора нужно как минимум удвоить и добавить маленький хвостик в 5–10% для амортизации перепадов напряжения.

    Встречно-параллельное подключение светодиода и диода

    Встречно-параллельное подключение светодиода и диодаВстречно-параллельное подключение двух одинаковых светодиодов к напряжению 220 В.

    Как подключить светодиоды к сети 220 В? Если подразумевается подключение их в количестве двух штук (иди любого другого четного количества), то можно сразу расположить светодиоды так, чтобы заменить и диод обратного напряжения, и обычный.

    Аналогично предыдущей схеме вместо маленького диода на обратное направление ставится второй светодиод. Таким образом, первый импульс придется на первый светодиод, а возвратная амплитуда вернется на гасящий резистор через второй.

    Для реализации такой схемы не забудьте подключить светодиод к сети, соблюдая обратное направление (это касается второго элемента). Разделение будет такое – половина в одну сторону, половина в другую.

    Встречно-параллельное подключение двух светодиодов

    Два последних способа очень экономичны в плане покупки и установки радиодеталей, однако имеют общий существенный минус – при двойном сопротивлении на резисторе образуется и двойное выделение тепла.

    Поэтому необходимо правильно рассчитать его мощность. Представим наиболее простые способы выполнить расчет. Предположим, что в наших схемах использовались резисторы с сопротивлением в 30 кОм, при переменном напряжении 220 В они выдают ток около 10 мА.

    Рассчитываем, сколько тепла образуется на элементе:

    10×10×30 = 3 000 мВт или 3 Вт.

    Из этого следует, что для нормальной работы резистора в цепи с двумя светодиодами его мощность должна приближаться к 4 Вт – этого запаса вполне достаточно для безопасной работы.

    Возникает следующая проблема – увеличение количества запитанных светодиодов от сети в цепи даже до 3 штук ведет к колоссальным требованиям к резистору – его мощность уже должна приближаться к 40 Вт, что экономически и логически совсем не выгодно. Этим нюансом пренебрегать не надо – если мощности окажется недостаточно для выделения тепла такой силы, резистор очень быстро перегреется и сгорит, вызвав в сети опасное короткое замыкание и доставив много проблем.

    Включение конденсатора в электрическую цепь. Такой вид нагрузки имеет большое преимущество перед резистором – его сопротивление реактивное, то есть на нем мощность не рассеивается. Ниже представлена наиболее частая схема подключения светодиодов от сети 220 В с конденсатором.

    Следует помнить, что при всех своих преимуществах конденсатор имеет одну существенную опасность для пользователя – после отключения подачи тока в сеть 220 В он продолжает хранить внутри остаточные заряды. Для их нейтрализации в цепь подключается резистор R1. Резистор R2 устанавливается для защиты цепи от резкого скачка напряжения через конденсатор.

    Также не забываем и об установке диода обратного напряжения VD1, который защищает LED от возвратной полярности.

    Схема подключения светодиодов через конденсатор

    Упомянем и о материале нагрузки. Он бывает двух видов – полярный и неполярный. Для нашей цепи в обязательном порядке устанавливаются только вольтовые неполярные варианты.

    Электролитные и танталовые устанавливать запрещено – обратное напряжение очень быстро разрушит их структуру, что приведет к выгоранию цепи и короткому замыканию.

    Его мощность аналогична резистору для этих целей – не менее 400 В.

    Расчет емкости конденсатора

    У конденсатора есть параметр, который перед подключением светодиодов к сети 220 вольт нужно рассчитывать – емкость. Эмпирическая формула приведена ниже:

    где: U – все то же амплитудное напряжение переменного тока, 310 В;

    I – ток, который проходит через установленный светодиод, мА;

    Uд – падающее напряжение тока для образования свечения на кристалле.

    Применение в быту

    Чаще всего такие схемы встречаются в выключателях с подсветкой. Типичная схема правильного использования указана ниже:

    Подключение светодиода в выключателе

    Ввиду маленькой мощности световых устройств в них нет защищающих обратных диодов. Резистор установлен таким образом, чтобы ограничить прямой ток значением 1 мА.

    Такая схема подключения светодиода к сети 220 вольт не особо эффективна в плане яркости свечения, оно очень тусклое, но свою роль играет хорошо – в темной комнате выключатель видно.

    Здесь обратное напряжение при размыкании контактов цепи направлено на резистор, в качестве дополнительной нагрузки также выступает наличие светодиодной или любой другой лампочки, а также блока питания. Таким образом, светодиод защищен он обратного пробоя током.

    Техника безопасности

    Кратко о нюансах подключения, которое выполняется в большинстве домов – для обеспечения безопасности при работе с электрической цепью часто бывает мало выключить один только выключатель.

    Дело в том, что он, как правило, размыкает фазу, но при этом из-за отсутствия заземления на ноле остается остаточное напряжение. Если заземление неправильное, например, люди подключаются к батарее или водопроводу, есть риск попасть на напряжение между фазой и заземлением.

    Отключайте питание полностью на рубильнике или счетчике на входе в дом или квартиру, и сделайте уже правильное заземление, если у вас его нет.

    Заключение

    В создании такой цепи главный нюанс – правильный подбор параметров резистора и конденсатора.

    Переменный ток, который протекает в розетке, оказывает сильное разрушающее действие на элементы, неприспособленные к пропусканию через себя обратного тока.

    Грамотное ограничение амплитуды переменного тока с заданным амортизационным запасом и правильный расчет обезопасит цепь от выгорания и короткого замыкания, позволив ей работать долго и надежно.

    Лучший вариант схемы питания светодиода от 220 вольт. Как подключить светодиод индикатор к сети, работающий от напряжения 220 В, как сделать, спаять самому

    Мигающий светодиод от 220в

    Тема: рабочий вариант электрической схемы запитки светового диода от 220 V

    Порой возникает необходимость подключить обычный светодиод к сетевому переменному напряжению величиной 220 вольт. Например, это может быть нужно при установке светодиодного индикатора на переднюю панель какого-либо электроприбора, который будет сигнализировать об определенном режиме работы той или иной функции устройства.

    Допустим это индикатор наличия сетевого питания, или сигнальная лампа аварии и т.д. Как известно, большинство обычных индикаторных светодиодов изначально рассчитаны на постоянное низковольтное напряжение величиной от 1,5 до 4 вольт. Сила тока, которую могут потреблять такие светодиоды около 5 – 20 миллиампер.

    Следовательно, чтобы запитать такой световой диод от более высокого напряжения, да к тому же переменного типа, нужна специальная схема.

    Данная схема, по моему мнению, является наилучшим вариантом подключения индикаторного светодиода к переменному, сетевому напряжению 220 вольт. Она имеет, пожалуй, всего один недостаток, это относительно большое количество деталей.

    Во всем остальном она хороша (ее элементы не нагреваются, светодиод защищен от пробоя высоким обратным напряжением, имеющиеся незначительные пульсации света не заметны человеческому глазу, путем изменения емкости конденсатора можно подбирать нужную силу тока, которую будет потреблять светодиод, возможность подключения множества световых диодов в схему).

    Теперь давайте разберем саму электрическую схему, ее работу, назначение функциональных элементов. Итак, в начале схемы стоит конденсатор C1, который является ограничителем тока.

    Как известно конденсаторы не пропускают через себя постоянный ток, тем самым являясь для него бесконечно большим сопротивлением. Переменный же ток конденсаторы могут весьма хорошо пропускать, и величина этого тока будет зависеть от частоты и от емкости конденсатора.

    Поскольку в обычной электросети частота стандартизирована и равна 50 герцам, то силу тока в схеме мы можем менять только за счет подбора соответствующей емкости.

    Стоит заметить, что конденсатор C1 не должен быть электролитом (иметь полюса)! Поскольку в этом случае он попросту может взорваться. В схему ставится емкость пленочного типа.

    Величина напряжения данного токоограничительного конденсатора должна быть более 250 вольт (можно и 250 В, но лучше 400 В или 600 В). В данной схеме питания индикаторного светодиода от напряжения 220 вольт емкость конденсатора равна 220 nF (220 нанофарад, они же 0,22 микрофарад).

    Данная емкость соответствует силе тока около 15 миллиампер, что является вполне оптимальным вариантом питания обычного индикаторного светодиода.

    Напряжение же на световом диоде осядет ровно столько, сколько ему требуется для своей нормальной работы (в схеме питающая энергия контролируется силой тока, а нужное постоянное напряжение возникает вследствии падения напряжения на светодиоде).

    Вот таблица зависимости емкости конденсатора C1 от силы тока светодиода:

    Параллельно конденсатору C1 стоит резистор R1. Его функция заключается в разряде конденсатора, после отключения схемы от питающего напряжения.

    То есть, данная схема питания индикаторного светового диода будет работать и без R1, но тогда существует большая вероятность, что Вас может ударить небольшим током (при случайном соприкосновении с токопроводящими частями схемы) даже после отключения питания от этой схемы.

    Этот резистор просто снимает накопленный электрический заряд с конденсатора, и все. Его можно поставить небольшой мощности, величиной около 1 мегаома (от 500 килоом до 2 мегаом).

    На схеме можно увидеть еще один резистор R2, который является токоограничительным. Для переменного тока фиксированной частоты и напряжения конденсатор будет иметь свое определенное реактивное сопротивления, которое нам и ограничивает силу тока для питания светодиода.

    Но вот для случайных всплесков напряжения, что возникают в электросети по причине включения и выключения различных, мощных индуктивных нагрузок (сварочные аппараты, мощные трансформаторные блоки питания, индукционные электроплиты, обогреватели и т.д.

    ) наш конденсатор будет иметь практически нулевое сопротивление.

    То есть, если Ваш сосед часто включает и выключает такие мощные индуктивные нагрузки, то возникающие всплески напряжения легко пройдут через конденсатор и осядут на индикаторном светодиоде, что с большой вероятностью его может вывести из строя. Именно силу тока таких всплесков призван ограничивать резистор R2. В схеме номинал этого резистора может быть от 68 ом до 150 ом (мощность 0,5 ватт).

    Ну и последней, важной функциональной частью схемы питания индикаторного светодиода от напряжения 220 вольт является выпрямительный диодный мост.

    Его роль заключается в преобразовании переменного напряжения в постоянное (хотя и скачкообразное). Этот мост все полуволны переменного напряжения переводит в одну полуволну, частота которой уже будет 100 герц.

    Именно эта частота уже не воспринимается как мерцающая. То есть, раздражающих световых мерцаний мы не заметим.

    При подборе этого диодного моста важно чтобы его диоды (или готовый мост в виде целостной сборки) были рассчитаны на обратное напряжение более 400 вольт, и силу прямого тока более того, что будет потребляться индикаторным светодиодом. В схеме я поставил на диодный мост диоды типа 1N4007, у которых обратное напряжение равно 1000 вольт, и прямой ток они выдерживают до 1 ампера. Стоят они недорого! Имеют маленькие размеры. Широко распространены, легко доступны.

    Ну вот и все, что касается элементов данной электрической схемы питания светодиода индикатора от переменного, сетевого напряжения 220 вольт. Как я уже говорил выше, единственный недостаток этой схемы заключается в том, что она содержит относительно много элементов. Во всем остальном она хороша. Так что если кому нужно, берите и собирайте ее.

    P.S. На просторах интернета можно найти множество более простых схем для питания световых диодов от 220 В. Они имеют, как свои достоинства, так и свои недостатки. Среди них я выбрал наиболее оптимальный и рабочий вариант, чем собственно с вами и поделился в этой статье.

    Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)

    Мигающий светодиод от 220в

     При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радиоэлементом индикации на настоящий момент является светодиод.

    В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока – розетки, которая есть в любой благоустроенной квартире.

     Если вам необходимо будет запитать несколько светодиодов одновременно, то об этом мы также упомянем в нашей статье. Фактически такие схемы применяются для светодиодных гирлянд или ламп, это немного другое.

    Фактически здесь необходимо реализовать так называемый драйвер для светодиодов. Итак, давайте не будем все валить в одну кучу. Попробуем разобраться по порядку.

    Принцип понижения напряжения питания для светодиода

     Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор.

    В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения.

    Что же, теперь обо всех этих вариантах по порядку.

    Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)

     Схема подключения светодиода к 220 вольтам на вид не сложная, принцип ее работы прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода.

    Так в итоге полностью заряжается конденсатор. Далее приходит вторая полуволна, когда конденсатор начинает разряжаться. В этом случае напряжение также идет через стабилитрон, который теперь работает в своем штатном режиме и через светодиод. В итоге на светодиод в это время подается напряжение равное напряжению стабилизации стабилитрона.

    Здесь важно подобрать стабилитрон с тем же номиналом, что и светодиод.

    Здесь все вроде как просто и теоретически реализуется нормально. Однако точные расчеты не столь просты. Ведь по сути надо рассчитать емкость конденсатора, который будет являться в данном случае гасящим. Делается это по формуле.

    Прикинем: 3200*0,02/√(220*220-3*3)=0,29 мКФ. Вот какой должен быть конденсатор при напряжении для светодиода 3 вольта, а токе 0,02 А. Вы же можете подставить свои значения и рассчитать свой вариант.

    Радиодетали для подключения светодиода к 220 вольтам

    Мощность резистора может быть минимальной вполне подойдет 0.25 Вт (номинал на схеме в омах).Конденсатор (емкость указана в микрофарадах) лучше подобрать с запасом, то есть с рабочим напряжением в 300 вольт. Светодиод может быть любой, например с напряжением свечения от 2 вольт АЛ307 БМ или АЛ 307Б и до 5.5 воль – это КЛ101А или КЛ101Б.

    Стабилитрон как мы уже упоминали должен соответствовать напряжению питания светодиода, так для 2 вольт это КС130Д1 или КС133А (напряжение стабилизации 3 и 3.3 вольта соответственно), а для 5.5 вольт КС156А или КС156Г

    Такой способ имеет свои недостатки, так как при незначительном скачке напряжения или отклонении в работе конденсатора, можем получить напряжения куда более высокое нежели 3 вольта. Светодиод сгорит в один момент. Плюсом является экономичность схемы, так как она импульсная. Скажем так, не высокая надежность, но экономичность. Теперь о варианте комбинированном.

    Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор + резистор)

    Здесь все тоже самое, за исключением того, что в цепочку добавили резистор. В целом влияние резистора способно сделать всю схему более предсказуемое, более надежной. Здесь будет меньше импульсных токов с высоким напряжением. Это хорошо!

    (…как и н на схеме выше использован гасящий конденсатор + резистор)

    Все плюсы и минусы сродни варианту с гасящим конденсатором, но надежности здесь тоже нет. Даже более, того, использование диода, а не  стабилитрона, скажется на защите светодиода при разрядке конденсатора. То есть весь ток потечет именно через светодиод, а не как в предыдущем случае через светодиод и стабилитрон. Вариант этот так себе. И вот последний случай, с применением резистора.

    Схема подключения светодиода к напряжению 220 вольт (резистор)

    Именно эти схемы мы вам рекомендуем к сборке. Здесь все по классическим принципам, закону Ома и формуле расчета мощности. Первое, рассчитаем сопротивление.

    При расчете сопротивления будет пренебрегать внутренним сопротивлением светодиода и падением напряжения на нем.

    В этом случае получим небольшой запас, так как фактическое падение напряжения на нем, позволит ему работать в режиме чуть более щадящем, нежели предписано характеристиками. Итак, скажем у нас ток светодиода 0,01 А и 3 вольта.

    R=U/I=220/0,01=22000 Ом=22 кОм. В схеме же 15 кОм, то есть ток приняли 0,014666 А, что вполне допустимо. Вот так и рассчитываются резисторы для этих случаев. Единственное здесь все будет зависеть от того, сколько резисторов вы применяете. Если два как на первой схеме, то делим получившийся результат пополам.

    Если один, то само собой все напряжение будет падать только на нем.

    Ну, как и положено, скажем о плюсах и минусах. Плюс один и очень большой, схема очень надежная. Минус тоже один, то что все напряжение будет падать на 1-2 резисторе, а значит он будет рассеивать большую мощность. Давайте прикинем. P=U*I=220*0,02=4,4 Ватта. То есть аж 4 Ватта должен быть резистор, если ток будет 0,02 А.

    В этом случае стоит щепетильно подойти к выбору резистора, он должен быть не менее 3-4 Ватт. Ну и сами понимаете, что об экономичности в этом случае речи не идет, когда на резисторе рассеивается 4 Ватта, а светодиодом можно пренебречь. Фактически это почти как маленькая светодиодная лампа, а горит всего лишь 1 светодиод.

    Подключение нескольких светодиодов к 220 вольтам

     Когда вам необходимо подключить сразу несколько светодиодов, это несколько друга история. Фактически такие вариации схемы, еще вернее схемы стабилизатора для светодиодов называют драйвером. Видимо от слова drive (англ.) в движении.

    То есть вроде как схема запускающая в работу группу светодиодов. Не будем говорить о корректности применения данного слова и о новых словах, которые мы постоянно заимствуем из других языков.

    Скажем лишь, что это несколько иной вариант, а значит и разбирать его мы будем в другой нашей статье “Драйвер для светодиодов (светодиодной лампы)”.

    Видео о подключении светодиода к сети 220 вольт

    А теперь тоже самое, но на видео, для тех кто видимо ленился читать;)

    Итак, если хотите подключить светодиод надежно, но чуть с завышенными энергозатратами, то вам к сборке рекомендуется последних два варианта из статьи. Для всех ищущих приключений – первый вариант в самый раз!

    Ну и напоследок калькулятор для тех, кто не в состоянии осилить подсчеты по формулам сам или лень;)

    Светодиоды с прямым питанием от 220В — DRIVE2

    Мигающий светодиод от 220в

    Светодиоды наступают! Проникая в сегмент домашнего освещения, производители светодиодов стараются облегчить жизнь производителям LED лампочек. В результате начинают появляться вот такие интересные изделия. alled.ru/samsung-ac-220v-led-c-220.

    html
    Принцип прост: берем маломощные LED кристаллы и набираем из них цепочку, рассчитанную на работу от 220В, но т.к. напряжение у нас переменное, то варианта два: выпрямитель или две таких цепочки, включенные встречно-параллельно.

    В данной матрице используется именно второй вариант.

    Картинка из даташита.

    Причем цепочки разбили на две части. Это позволяет подключать матрицу как к сети 110В при параллельном включении цепочек, так и к 220В, соединив цепочки последовательно

    Чертеж матрицы.

    Недостаток такого решения очевиден: матрица питается переменным напряжением, соответственно мерцает. Забегая вперед скажу, что на глаз это не заметно, но постоянно смотреть на свет такой лампы я бы не стал. Второй косяк именно этой партии, цветовая температура 5000К, тоже мало подходит для жилых помещений.

    По этому решено было изготовить пару лампочек для малообитаемых помещений, так сказать – коридор и туалет.Подходящие, круглые радиаторы у меня были куплены давно для других целей, но до сих пор лежали без дела. Под их размеры были изготовлены платы из фольгированного алюминия.

    Просверлил крепежные отверстия, отверстие для проводов. На плате, кроме площадки под сам светодиод, сделаны площадки под провода и под четыре резистора SMD1206.

    Почему четыре, потому что изучение даташита привело к тому, что на балласте будет падать около 0,7Вт тепла, так что SMD1206 с допустимой мощностью 0,25Вт – наш выбор.Платы были залужены и намазаны безотмывочным (со слов китайцев) флюсом.

    Потом я разложил по местам компоненты и напаял их, нагрев плату на утюге. Знаю, что не айс, но технология уже проверенная, если работать аккуратно, то все нормально, пока еще ничего не спалил.

    Готовые модули. Один из них уже прикручен к радиатору.

    А вот дальше я несколько дней искал донора, с которого можно было бы снять цоколь. В итоге начал рыться в коробке с лампочками и одна энергосберегайка оказалась дохлой. Расковырял её, оставил только цоколь с проводами. Приятным бонусом оказался предохранитель (предположительно) впаянный в разрыв одного из проводов. Припаял провода, заизолировал термоусадкой. Далее немного подрезал пластиковый корпус бывшей лампы, вставил туда радиатор. Радиатор вписался идеально. Есть подозрение, что эти радиаторы не случайно имеют именно такой размер. Зафиксировал банально – термопистолетом. После остывания, обрезал излишки клея и наша лампа готова!

    Такая маленькая, няшная лампочка!

    Лампа получилась очень компактной (50мм в диаметре, 70мм в длину вместе с цоколем) и, на мой взгляд, вполне симпатичной.
    Отдельный вопрос, это подбор балласта. В даташите целых две таблицы на эту тему. Даются зависимости тока от величины сопротивления при различных схемах включения (110 или 220В) и различных бинах светодиода по значению напряжения.

    Бин данных экземпляров мне неизвестен, по этому пришлось экспериментировать. При 2кОмах ток был около 20мА. Маловато, можно больше (до 29мА, рекомендуемый то 22мА). Поставил килоом, ток подскачил до 30мА. В итоге остановился на величине 1,6кОм. На прогретой лампе я намерил 22,5…23,0мА. То, что надо. Теперь самое интересное, как это светит.

    Лампа потребляет около 5Вт, из них на сам кристалл приходится менее 4,5Вт. Производитель заявляет световой поток 350…450Лм, по этому я рассчитывал на замену лампы накаливания мощностью 40Вт. А когда поставил лампочку в коридор, немного обалдел. Смотрим фото. Все фотографии сделаны с одинаковыми настройками экспозиции..

    Света практически одинаково! За лампой (левая стена на фото) света, конечно, меньше, т.к. все же лампочка получилась направленной, но я и не ждал от неё конкуренции 75(!) ваттной лампе накаливании! Мерцание видно только, если его искать специально. Радиатор прогревается сильно, но не критично (палец терпит, но не долго). Результатом доволен.

    UPD Год спустя. Прошло чуть больше года, все это время лампа работает круглые сутки, это около 9000 часов. Я делал две таких лампы, вторая все это время лежала без дела. У рабочей лампы пошла трещинами линза (видимо радиатор все-же маловат. Позже фото выложу), но светит она по-прежнему исправно.

    Переставил её в другое место, а на её место ввернул новую. Новая светит чуть поярче, т.е. старая “износилась” не сильно.

    UPD 4 года спустя. Вторая лампа, ввернутая заместо первой светит по сей день. Что там с ней визуально, не знаю, не лазил. Первая лампа так и работает в туалете и, видимо, будет работать вечно, т.к. там она не успевает прогреться.

    Подключаем светодиод через резистор и напрямую

    Мигающий светодиод от 220в

    Светодиоды — полупроводниковые приборы, преобразующие электроток в непосредственное световое излучение.

    Как подключить светодиод через резистор или напрямую, а главное сделать такое подсоединение безопасным в эксплуатации и долговечным — основные вопросы, которые рассматриваются с целью обеспечения работоспособности любых светоизлучающих диодов.

    Самостоятельное определение светодиодной полярности осуществляется несколькими несложными методами:

    • посредством измерений;
    • по результатам визуальной оценки;
    • при подключении к источнику питания;
    • в процессе ознакомления с технической документацией.

    К числу самых распространенных вариантов определения полярности светоизлучающих диодов относятся первые три способа, которые должны выполняться с соблюдением стандартной технологии.

    Использование тестирующих устройств

    С целью максимально точного определения светодиодной полярности, щупы мультиметра подключаются непосредственно к диоду, после чего отслеживаются показания тестера. При высвечивании на шкале «бесконечного» сопротивления, провода щупов меняются местами.

    Если тестер показывает какие-либо показатели конечного значения в условиях замеров сопротивления проверяемых светоизлучающих диодов, то можно быть уверенным в подключении прибора с соблюдением вида полярности, а данные о расположении «плюса» и «минуса» являются точными.

    Проверка светодиодов мультиметром

    Визуальное определение полярности

    Несмотря на множество существующих в настоящее время видов конструкций светодиодного оборудования, наиболее широкое распространение получили излучающие свет диоды, заключенные в цилиндрический корпус D от 3,5 мм.

    Наиболее мощные диоды сверх яркого типа обладают планарными плоскими выводами, промаркированными «+» и «-».

    Устройства в цилиндрическом корпусе имеют внутри пару электродов, отличающихся площадью. Именно катодная часть светоизлучающих диодов отличается большей электродной площадью и наличием характерного скоса на «юбке».

    Светодиоды, применяемые в поверхностном монтаже, обладают специальным скосом или «ключом», указывающим на катод или минусовую полярность.

    Подключение к источнику питания

    Передача питания от элементов с постоянным напряжением — один из самых наглядных вариантов определения диодной полярности, требующий использования специального блока с поступательным регулированием напряжения, или традиционной аккумуляторной батареи. После подключения, постепенно повышаются показатели напряжения, что вызывает свечение светодиода и свидетельствует о правильном определении полярности.

    Подключение диодов к питанию

    Чтобы проверить работоспособность светового диода, в обязательном порядке подключается резистор токоограничивающего типа с сопротивлением от 680 Ом.

    Этапы сборки

    При самостоятельной сборке и последующем тестировании излучающих свет диодов в рабочем режиме, целесообразно воспользоваться данной последовательностью:

    • определиться с техническими характеристиками, отраженными в сопроводительной документации;
    • составить схему подключения с учетом уровня напряжения;
    • вычислить показатели потребляемой мощности электроцепи;
    • подобрать драйвер или блок питания с оптимальной мощностью;
    • рассчитать резистор при стабилизированном напряжении;
    • определить полярность LЕD-источника;
    • припаять провода к светодиодным выходам;
    • подсоединить источник питания;
    • зафиксировать диод на радиаторе.

    Процесс тестирования излучающих свет диодов, заключается в подключении собранной конструкции к электрической сети и замере потребляемого тока.

    Звезда устанавливается на радиатор посредством теплопроводной пасты, а припаивать провода следует достаточно мощным паяльником, что обусловлено естественным забором алюминием тепла, с участка контакта и припоя.

    Источники питания

    Для подключения светодиода применяются специальные источники питания, разрабатываемые согласно установленным требованиям и нормативам. В процессе проектирования, потребуется определиться с коэффициентом мощности, энергетической эффективностью и уровнем пульсации.

    Основной особенностью современных источников питания является наличие встроенного корректора коэффициента мощности, а приборы для внутреннего освещения отличаются повышенными требованиями к уровню токовой пульсации.

    Схемы подключения светодиодов

    Если источник питания в виде светоизлучающих диодов, предполагается применять в наружном освещении, то показатели защиты такого устройства должны составлять IP-67 при широком температурном диапазоне.

    Источниками светодиодного питания в условиях токовой стабилизации обеспечиваются постоянные показатели выходного тока в широком диапазоне.

    Если источник для LЕD-светильника имеет стабилизацию по показателям напряжения, то формируется постоянное напряжение выходного типа в условиях токовой нагрузки, но не более максимально допустимых значений.

    В некоторых современных приборах присутствует комбинированная стабилизация.

    Самым экономичным вариантом источника питания для светодиодных приборов являются современные диммируемые устройства.

    Как подключить светодиод

    Обеспечение работоспособности излучающих свет диодов, предполагает не только наличие источника питания, но и строгого соблюдения схемы подключения.

    К 1,5 В

    Показатели рабочего напряжения светоизлучающих диодов, как правило, превышают 1,5 В, поэтому сверх яркие светодиоды нуждаются в источнике питания не менее 3,2-3,4 В. При подключении применяется преобразователь напряжения в виде блокинг-генератора на резисторе, транзисторе и трансформаторе.

    Запитываем светодиод к 1,5 ватт

    Использование упрощенной схемы, лишенной стабилизатора, позволяет обеспечивать непрерывную работоспособность светоизлучающих диодов до снижения напряжения в элементе питания до показателей 0,8 В.

    К 5 В

    Подключение светодиода к элементу питания с номинальными токовыми показателями на уровне 5 В предполагает подсоединение резистора, имеющего сопротивление в пределах 100-200 Ом.

    Параллельное подключение светодиодов

    Если подключение в 5 вольт необходимо для установки пары диодов, то в электрическую цепь последовательным способом включается резистор ограничительного типа с сопротивлением не более 100 Ом.

    К 9 В

    Батарейка типа «Крона» обладает относительно небольшой емкостью, поэтому такой источник питания очень редко применяется для подключения достаточно мощных светодиодов. Согласно максимальному току, не превышающему 30-40 мА, чаще всего осуществляется последовательное подсоединение трёх светоизлучающих диодов, имеющих рабочий ток 20 мА.

    К 12 В

    Стандартный алгоритм подключения диодов к элементу питания на 12 В включает в себя определение типа блока, нахождение номинального тока, напряжения и потребляемой мощности, а также подсоединение к выводам с обязательным соблюдением полярности. В этом случае резистор размещается на любом участке электрической цепи.

    Контакты на участках подсоединения излучающих свет диодов надежно запаиваются, а после штатной проверки работоспособности — изолируются специальной лентой.

    К 220 В

    При использовании источников питания 220 В, в обязательном порядке ограничивается ток, который будет протекать через световой диод, что предотвратит перегрев и выход светоизлучающего прибора из строя. Также необходимо понизить уровень обратного светодиодного напряжения с целью предупреждения пробоя.

    Схема подключения светодиодов к 220 вольт

    Ограничение уровня тока в условиях переменного напряжения осуществляется резисторами, конденсаторами или катушками индуктивности. Питание диода при постоянном напряжении предполагает использование исключительно резисторов.

    Питание светодиодов от 220 В своими руками

    Драйвер для диодных источников света на 220 В, является неотъемлемой частью сборки безопасного и долговечного прибора, и изготовить такое устройство вполне можно самостоятельно.

    Чтобы светоизлучающие диоды смогли работать от традиционной сети, потребуется уменьшить амплитуду напряжения, снизить силу тока, а также выполнить преобразование переменного напряжения в постоянные показатели.

    С этой целью используется делитель, имеющий резисторную или ёмкостную нагрузку, а также стабилизаторы.

    Подключение светодиодной ленты к 220 В

    Надежным самодельным драйвером для диодных источников света на 220 В, может выступать элементарный импульсный блок питания, не обладающий гальванической развязкой. Самым главным преимуществом такой схемы является простота исполнения, дополненная надёжностью эксплуатации.

    Однако при самостоятельном выполнении сборки нужно соблюдать максимальную осторожность, так как особенностью данной схемы является полное отсутствие ограничений по показателям отдаваемого тока.

    Безусловно, светодиодами будут забираться стандартные 1,5 А, но соприкосновение рук с оголенными проводами спровоцирует повышение до 10 А и более, что весьма ощутимо.

    В основе стандартной схемы простейшего светодиодного драйвера на 220В лежат три главных каскада, представленные:

    • делителем напряжения на показателях сопротивления;
    • диодным мостом;
    • стабилизацией напряжения.

    Для сглаживания пульсации напряжения, потребуется в параллельном направлении цепи подключить электролитический конденсатор, ёмкость которого подбирается индивидуально, в соответствии с мощностью нагрузки.

    Стабилизатором в этом случае вполне может выступать общедоступный элемент L-7812. Следует отметить, что собранная таким способом схема диодных источников света на 220 вольт отличается стабильной работоспособностью, но перед включением в электрическую сеть обязательно производится тщательная изоляция оголённых проводов и участков пайки.

    Как подключить светодиод к 220 вольт

    Мигающий светодиод от 220в

    Очень часто возникает такая ситуация, когда требуется подключить светодиод к 220 т. Для этого существуют специальные схемы, позволяющие сделать подсветку в выключателе или индикатор для бытовой техники. Как правило, при расчетах, напряжение сети берется по амплитудному значению, а ток, проходящий через светодиод, должен быть на 30% ниже номинального.

    Расчет питания светодиода

    Когда для питания светодиода используется постоянное напряжение, в цепь, последовательно с ним включается резистор для ограничения тока. Для расчета его сопротивления используется специальная формула:

    Где Uпит – это питающее напряжение, Uсдсостоит из суммы падений напряжения у каждого светодиода, а Iном.сд – является номинальным током резистором. Таким образом, формула позволяет определить сопротивление с достаточной степенью точности.

    Питание диодов от переменного сетевого напряжения имеет свои особенности. Здесь присутствуют импульсы высокого напряжения, которое прикладывается к светодиоду в обратной полярности.

    В это время, рп-переход у светодиода оказывается закрытым, а значение тока равно нулю. Происходит приложение всего сетевого напряжения к кристаллу светодиода, тогда как его допустимое обратное напряжение составляет всего 30-60 В.

    Таким образом, схемы подключения при переменном токе должны ограничивать прямой ток и прикладываемое обратное напряжение.

    Варианты подключения светодиодов к сети

    В первом, наиболее распространенном варианте, для подключения используется светодиод, диод и резистор. Светодиод имеет малую мощность, а его обратное напряжение превышает 350 т.

    Сопротивление резистора рассчитывается с помощью формулы, приведенной выше. Чтобы снизить нагрев, сопротивление резистора можно увеличить, хотя это и приведет к некоторому снижению яркости света.

    Подключение нескольких светодиодов производится последовательно, с соблюдением полярности.

    Существует второй вариант того, как подключить светодиод к 220 т. Для снижения тепловыделения элементов, присутствующих в схеме, вместо резистора можно использовать конденсатор, являющийся реактивным сопротивлением.

    Кроме того, сопротивление может быть составным, когда задействован резистор и конденсатор. Эта пара выступает в роли токоограничивающего комбинированного сопротивления. Чтобы свечение светодиода было более ярким, увеличивается емкость конденсатора. Количество светодиодов в схеме может быть увеличено, при этом, параметры элементов схемы не изменяются.

    Подключение светодиода к сети 220В

    Мигающий светодиод от 220в

    Для питания светодиодов необходим источник постоянного тока. Кроме этого, этот ток должен быть стабилизирован. В бытовой сети напряжение 220В, что значительно больше, чем нужно для питания обычных светодиодов.

    Плюс, это напряжение переменное. Как же совместить несовместимое и подключить светодиод к сети 220В? Нет ничего невозможного, но сначала попробуем разобраться, для чего это подключение может вообще потребоваться.

    Прежде всего, речь может идти о подключении мощных источников света. В этом случае совсем простыми способами не обойтись, потребуются специализированные драйвера или аналогичные приборы, которые будут способны выдать стабилизированный ток большой мощности. Оставим этот вариант напоследок.

    Также часто бывает необходимо к 220В подключить маломощный индикаторный светодиод – для, собственно, индикации того, что напряжение в данный момент присутствует.

    Или может потребоваться маломощное дежурное освещение, для которого городить сложную электронику совсем не хочется.

    В этих случаях, если нужные токи светодиодов не превышают 20-25мА, можно обойтись минимальным количеством дополнительных деталей. Рассмотрим эти подключения подробнее.

    Самый простой способ ограничения тока – использование резистора. Этот вариант подойдет и для сети переменного тока с напряжением 220В. Необходимо только учесть один важный нюанс: 220В – это ДЕЙСТВУЮЩЕЕ напряжение.

    Фактически же напряжение в бытовой сети меняется в более широких пределах – от -310В до +310В. Это, так называемое, АМПЛИТУДНОЕ напряжение. Подробнее, почему так – читайте в Википедии.

    Для нас же важно, что для расчета значений токоограничиваюжего резистора нужно использовать не действующее, а именно амплитудное значение сети переменного тока, т.е. 310В.

    Сопротивление резистора рассчитывается по привычному закону Ома:

    R = (Ua – UL) / I, где Ua – амплитудное значение напряжения (310В), UL – падение напряжения на светодиодах, I – требуемая сила тока.

    Токоограничивающий резистор должен быть очень мощным, поскольку на нем будет рассеиваться большое количество тепла, которое будет зависеть от рабочего тока и сопротивления резистора:

    P = I2 * R

    Резистор будет греться и, если окажется, что он не рассчитан на рассеивание того количества тепла, которое на нем выделяется, он достаточно эффектно сгорит.

    Поэтому про допустимую мощность резистора забывать ни в коем случае не следует, а для реального использования подбирать ее еще и с запасом.

    Если вам не хочется заниматься собственными расчетами значений резистора, можете воспользоваться “Калькулятором светодиодов”.

    Простые схемы для подключения светодиода к сети 220В с токоограничивающим резистором

    Светодиоды способны выдержать только небольшое обратное напряжение (до 5-6В) и для работы в сети переменного тока им нужна защита.

    В самом простом случае для этого может быть использован диод, которые включается в цепь последовательно светодиоду.

    Требования к диоду – он должен быть рассчитан на обратное напряжение не менее 310В и на прямой ток, который нам нужен. Подойдет, например, диод 1N4007 – обратное напряжение 1000В, прямой ток 1А.

    Второй вариант – включить диод параллельно светодиоду, но в обратном направлении. В этом случае подойдет любой маломощный диод, например, КД521 или аналогичный. Более того, можно вместо диода подключить второй светодиод (как и изображено на правой схеме). В этом случае они будут защищать друг друга и одновременно светиться.

    Для ограничения тока в переменной сети можно использовать и, так называемый, балластный конденсатор. Это неполярный керамический конденсатор, который включается в цепь последовательно.

    Его допустимое напряжение должно быть, по меньшей мере, с полуторным запасом больше напряжения сети – не менее 400В.

    Ограничение тока будет зависеть от емкости конденсатора, которая может быть рассчитана по следующей эмпирической формуле:

    C = (4,45 * I) / (Ua – UL), где I – требуемый ток в миллиамперах. Значение емкости при этом получится в микрофарадах.

    Использование балластного конденсатора для подключения светодиода к сети 220В

    В приведенной выше схеме резистор R1 необходим для разряда конденсатора после отключения питания. Без его использования конденсатор C1 заряд в себе сохранит и пребольно ударит, если потом коснуться его выводом.

    Резистор R2 служит для ограничения начального тока заряда конденсатора C1.

    Использование его очень желательно, поскольку он продлевает срок службы других деталей, кроме того, при пробое конденсатора он будет служить предохранителем и сгорит первым, защитив остальную часть схемы.

    Оставшиеся детали – светодиод D1 и защитный диод D2 уже знакомы нам с предыдущих схем.

    Почему не использовать конденсаторы вместо токоограничивающего резистора все время? Дело в том, что высоковольтные конденсаторы достаточно крупные по размеру да и при их использовании резисторы все равно нужны – готовая схема в итоге займет больше места. Преимущество же их в том, что они практически не греются.

    Приведенные схемы подключения светодиодов к сети 220В часто используются на практике. Индикаторные светодиоды можно встретить в выключателях с подсветкой.

    Схема обычного выключателя с подсветкой

    Как можно увидеть, здесь даже не используется защитный диод! Дело в том, что сопротивление резистора очень велико, итоговый ток получается очень небольшой – около 1мА. Светодиод светится совсем не ярко, но этого свечения хватает, чтобы подсветить выключатель в темной комнате.

    Схемы с балластным конденсатором используются в простых светодиодных лампах.

    Схема светодиодной лампы мощностью до 5Вт

    Здесь ток выпрямляется диодным мостом. Резисторы R2 и R3 служат для защиты моста и светодиодов соответственно. Для уменьшения мерцания света используется конденсатор С2.

    Как же быть, если к бытовой сети переменного тока необходимо подключить светодиоды общей мощностью в десятки и даже сотни ватт? Самый правильный вариант – использовать специализированные драйвера, которые позволят это сделать. Их можно приобрести уже готовыми или собрать самому. Подробнее об этом написано в статье “Схема драйвера для светодиода от сети 220В”.

    Есть еще один не совсем правильный, но достаточно простой и работающий способ – можно переделать электронный балласт компактной люминесцентной лампы (обычной домашней энергосберегайки).

    Несложные манипуляции позволят подключить светодиоды к сети 220В, используя старую лампу, которая стала светить тускло или перестала светить вовсе.

    Как это сделать – читайте в статье “Простой драйвер светодиода от сети 220В”.

    Схема включения светодиода в сеть 220 вольт

    Мигающий светодиод от 220в

    Домашний уют 22 января 2017

    Сейчас стало очень популярным освещение светодиодными лампами. Все дело в том, что это освещение не только достаточно мощное, но и экономически выгодное. Светодиоды – это полупроводниковые диоды в эпоксидной оболочке.

    Изначально они были достаточно слабыми и дорогими. Но позднее в производство были выпущены очень яркие белые и синие диоды. К тому времени их рыночная цена снизилась.

    На данный момент существуют светодиоды практически любого цвета, что послужило причиной использования их в различных сферах деятельности.

    К ним относится освещение различных помещений, подсветка экранов и вывесок, использование на дорожных знаках и светофорах, в салоне и фарах автомобилей, в мобильных телефонах и т. д.

    Описание

    Светодиоды потребляют мало электроэнергии, в результате чего такое освещение постепенно вытесняет ранее существовавшие источники света.

    В специализированных магазинах можно приобрести различные предметы, в основе которых светодиодное освещение, начиная от обычного светильника и светодиодной ленты, заканчивая светодиодными панелями.

    Их всех объединяет то, что для их подключения необходимо наличие тока в 12 или 24 В.

    В отличие от других источников освещения, которые используют нагревательный элемент, здесь применяется полупроводниковый кристалл, который генерирует оптическое излучение под воздействием тока.

    Чтобы понять схемы включения светодиодов в сеть 220В, нужно для начала сказать о том, что напрямую от такой сети он питаться не сможет. Поэтому для работы со светодиодами нужно соблюдать определенную последовательность подключения их к сети высокого напряжения.

    Электрические свойства светодиода

    Вольтамперная характеристика светодиода – это крутая линия. То есть, если напряжение увеличится хотя бы немного, то ток резко возрастет, это повлечет за собой перегрев светодиода с последующим его перегоранием. Чтобы этого избежать, необходимо включить в цепь ограничительный резистор.

    Но важно не забывать о максимально допустимом обратном напряжении светодиодов в 20 В. И в случае его подключения в сеть с обратной полярностью он получит амплитудное напряжение в 315 вольт, то есть в 1,41 раза больше, чем действующее. Дело в том, что ток в сети на 220 вольт переменный, и он изначально пойдет в одну сторону, а затем обратно.

    Для того чтобы не дать току двигаться в противоположном направлении, схема включения светодиода должна быть следующей: в цепь включается диод. Он не пропустит обратное напряжение. При этом подключение обязательно должно быть параллельным.

    Еще одна схема включения светодиода в сеть 220 вольт заключается в установке двух светодиодов встречно-параллельно.

    Что касается питания от сети с гасящим резистором, то это не самый лучший вариант. Потому что резистор будет выделять сильную мощность. К примеру, если использовать резистор 24 кОм, то мощность рассеивания составит примерно 3 Вт. При включении последовательно диода мощность снизится вдвое.

    Обратное напряжение на диоде должно равняться 400 В. Когда включаются два встречных светодиода, можно поставить два двухваттных резистора. Их сопротивление должно быть в два раза меньше. Это возможно, когда в одном корпусе два кристалла разных цветов. Обычно один кристалл красный, другой зелёный.

    В том случае, когда используется резистор 200 кОм, наличие защитного диода не требуется, так как ток на обратном ходу маленький и не будет вызывать разрушение кристалла. Эта схема включения светодиодов в сеть имеет один минус – маленькая яркость лампочки. Она может применяться, например, для подсветки комнатного выключателя.

    Из-за того, что ток в сети переменный, это позволяет избежать лишних трат электричества на нагрев воздуха с помощью ограничительного резистора. С этой задачей справляется конденсатор. Ведь он пропускает переменный ток и при этом не нагревается.

    Важно помнить, что через конденсатор должны проходить оба полупериода сети, для того чтобы он смог пропускать переменный ток. А так как светодиод проводит ток только в одну сторону, то необходимо поставить обычный диод (либо еще дополнительный светодиод) встречно-параллельно светодиоду. Тогда он и будет пропускать второй полупериод.

    Когда схема включения светодиода в сеть 220 вольт будет отключена, на конденсаторе останется напряжение. Иногда даже полное амплитудное в 315 В. Это грозит ударом тока.

    Чтобы этого избежать, нужно предусмотреть помимо конденсатора еще и разрядный резистор большого номинала, который в случае отсоединения от сети моментально разрядит конденсатор.

    Через этот резистор, при нормальной его работе, течет незначительный ток, не нагревающий его.

    Для защиты от импульсного зарядного тока и в качестве предохранителя ставим низкоомный резистор. Конденсатор должен быть специальный, который рассчитан на цепь с переменным током не меньше 250 В, либо на 400 В.

    Схема последовательного включения светодиодов предполагает установку лампочки из нескольких светодиодов, включенных последовательно. Для этого примера достаточно одного встречного диода.

    Так как падение напряжения тока на резисторе будет меньше, то от источника питания нужно отнять суммарное падение напряжения на светодиодах.

    Необходимо, чтобы устанавливаемый диод был рассчитан на ток, аналогичный току, проходящему через светодиоды, а обратное напряжение должно быть равно сумме напряжений на светодиодах. Лучше всего использовать чётное количество светодиодов и подключать их встречно-параллельно.

    В одной цепочке может быть больше десяти светодиодов. Чтобы рассчитать конденсатор, нужно отнять от амплитудного напряжения сети 315 В сумму падения напряжения светодиодов. В результате узнаем число падения напряжения на конденсаторе.

    Видео по теме

    Ошибки подключения светодиодов

    • Первая ошибка – это когда подключают светодиод без ограничителя, напрямую к источнику. В этом случае светодиод очень быстро выйдет из строя, по причине отсутствия контроля над величиной тока.
    • Вторая ошибка – это подключение к общему резистору светодиодов, установленных параллельно.

      Из-за того, что происходит разброс параметров, яркость горения светодиодов будет разной. К тому же, в случае выхода одного из светодиодов из строя, произойдет возрастание тока второго светодиода, из-за чего он может сгореть. Так что, когда используется один резистор, необходимо последовательно подключать светодиоды.

      Это позволяет оставить ток прежним при расчёте резистора и сложить напряжения светодиодов.

    • Третья ошибка – это когда светодиоды, которые рассчитаны на разный ток, включают последовательно. Это становится причиной того, что один из них будет гореть слабо, либо наоборот – работать на износ.

    • Четвертая ошибка – это использование резистора, у которого недостаточное сопротивление. Из-за этого ток, текущий через светодиод, будет слишком большим. Некоторая часть энергии, при завышенном напряжении тока, превращается в тепло, в результате чего происходит перегрев кристалла и значительное уменьшение его срока службы.

      Причина этому – дефекты кристаллической решетки. Если напряжение тока еще больше возрастет, и р-n-переход нагреется, это приведет к снижению внутреннего квантового выхода. В результате этого упадет яркость светодиода, и кристалл будет подвергаться разрушению.

    • Пятая ошибка – включение светодиода в 220В, схема которой очень проста, при отсутствии ограничения обратного напряжения. Максимально допустимое обратное напряжение у большинства светодиодов – примерно 2 В, а напряжение обратного полупериода влияет на падение напряжения, которое равняется напряжению питания при запертом светодиоде.
    • Шестая причина – это использование резистора, мощность которого недостаточна. Это провоцирует сильный нагрев резистора и процесс плавления изоляции, которая касается его проводов. Затем начинает обгорать краска и под влиянием высоких температур наступает разрушение. Все по причине того, что резистор рассеивает только ту мощность, на которую он был рассчитан.

    Схема включения мощного светодиода

    Для подключения мощных светодиодов нужно использовать AC/DC-преобразователи, у которых стабилизированный выход тока. Это поможет отказаться от применения резистора или интегральной схемы драйвера светодиодов. В то же время мы сможем добиться простого подключения светодиодов, комфортного использования системы и снижения стоимости.

    Прежде чем включить в электросеть мощные светодиоды, убедитесь в надежности подключения их к источнику тока. Не подключайте систему к блоку питания, который находится под напряжением, иначе это приведет к выходу из строя светодиодов.

    Светодиоды 5050. Характеристики. Схема включения

    К маломощным светодиодам относятся также светодиоды поверхностного монтажа (SMD). Чаще всего их используют для подсветки кнопок в мобильном телефоне или для декоративной светодиодной ленты.

    Светодиоды 5050 (размер типокорпуса: 5 на 5 мм) – это полупроводниковые источники света, прямое напряжение которых 1,8-3,4 В, а сила прямого тока на каждый кристалл – до 25 мА.

    Особенность светодиодов SMD 5050 состоит в том, что их конструкция состоит из трех кристаллов, которые позволяют светодиоду излучать несколько цветов. Их называют RGB-светодиодами. Корпус их выполнен из термоустойчивого пластика.

    Линза рассеивания прозрачная и залита эпоксидной смолой.

    Для того чтобы светодиоды 5050 работали как можно дольше, их необходимо подключать к номиналам сопротивлений последовательно. Для максимальной надежности схемы на каждую цепочку лучше подключить отдельный резистор.

    Схемы включения мигающих светодиодов

    Мигающий светодиод – это светодиод, в который встроен интегральный генератор импульсов. Частота вспышек у него составляет от 1,5 до 3 Гц.

    Несмотря на то что мигающий светодиод достаточно компактный, в него вмещен полупроводниковый чип генератора и дополнительные элементы.

    Что касается напряжения мигающего светодиода, то оно универсально и может варьироваться. Например, для высоковольтных это З-14 вольт, а для низковольтных 1,8-5 вольт.

    Соответственно, к положительным качествам мигающего светодиода можно отнести, помимо маленького размера и компактности устройства световой сигнализации, еще и широкий диапазон допустимого напряжения тока. К тому же он может излучать различные цвета.

    В отдельные виды мигающих светодиодов встраивают около трех разноцветных светодиодов, у которых разная периодичность вспышек.

    Мигающие светодиоды еще и достаточно экономичны. Дело в том, что электронная схема включения светодиода сделана на МОП-структурах, благодаря чему мигающим диодом можно заменить отдельный функциональный узел. По причине маленьких габаритов мигающие светодиоды часто применяются в компактных устройствах, требующих наличия маленьких радиоэлементов.

    На схеме мигающие светодиоды обозначаются так же, как и обычные, исключение лишь в том, что линии стрелок не просто прямые, а пунктирные. Тем самым они символизируют мигание светодиода.

    Через прозрачный корпус мигающего светодиода видно, что он состоит из двух частей. Там на отрицательном выводе катодного основания находится кристалл светоизлучающего диода, а на анодном выводе расположен чип генератора.

    Соединены все составляющие данного устройства с помощью трех золотистых проволочных перемычек. Чтобы отличить мигающий светодиод от обычного, достаточно просмотреть прозрачный корпус на свету. Там можно увидеть две подложки одинаковой величины.

    На одной подложке находится кристаллический кубик светоизлучателя. Он состоит из редкоземельного сплава.

    Для того чтобы увеличить световой поток и фокусировку, а также для формирования диаграммы направленности используют параболический алюминиевый отражатель.

    Этот отражатель в мигающем светодиоде по размеру меньше, чем в обычном. Это по причине того, что во второй половине корпуса находится подложка с интегральной микросхемой.

    Между собой эти две подложки сообщаются при помощи двух золотистых проволочных перемычек. Что касается корпуса мигающего светодиода, то он может быть выполнен либо из светорассеивающей матовой пластмассы, либо из прозрачного пластика.

    Из-за того, что излучатель в мигающем светодиоде находится не на оси симметрии корпуса, то для функционирования равномерной засветки необходимо применение монолитного цветного диффузного световода.

    Наличие прозрачного корпуса можно встретить лишь у мигающих светодиодов большого диаметра, которые обладают узкой диаграммой направленности.

    Из высокочастотного задающего генератора состоит генератор мигающего светодиода. Его работа постоянна, а частота составляет около 100 кГц.

    Наравне с высокочастотным генератором также функционирует делитель на логических элементах. Он, в свою очередь, осуществляет деление высокой частоты до 1,5-3 Гц. Причиной совместного применения высокочастотного генератора с делителем частоты является то, что для работы низкочастотного генератора необходимо наличие конденсатора с наибольшей ёмкостью для времязадающей цепи.

    Доведение высокой частоты до 1-3 Гц требует наличия делителей на логических элементах. А их достаточно легко можно применить на небольшом пространстве полупроводникового кристалла.

    На полупроводниковой подложке, помимо делителя и задающего высокочастотного генератора, находится защитный диод и электронный ключ.

    Ограничительный резистор встраивается в мигающие светодиоды, которые рассчитаны на напряжение тока от 3 до 12 вольт.

    Низковольтные мигающие светодиоды

    Что касается низковольтных мигающих светодиодов, то у них отсутствует ограничительный резистор. При переполюсовке питания требуется наличие защитного диода. Он необходим для того, чтобы не допустить выхода микросхемы из строя.

    Чтобы работа высоковольтных мигающих светодиодов была долговременной и шла бесперебойно, напряжение питания не должно превышать 9 вольт. Если напряжение тока возрастет, то рассеиваемая мощность мигающего светодиода увеличится, что приведет к нагреву полупроводникового кристалла. Впоследствии из-за чрезмерного нагрева начнется деградация мигающего светодиода.

    Когда необходимо проверить исправность мигающего светодиода, то для того, чтобы это сделать безопасно, можно использовать батарейку на 4,5 вольта и включенный последовательно со светодиодом резистор сопротивлением 51 Ом. Мощностью резистора должна быть не менее 0,25 Вт.

    Монтаж светодиодов

    Монтаж светодиодов – очень важный вопрос по той причине, что это непосредственно связано с их жизнеспособностью.

    Так как светодиоды и микросхемы не любят статику и перегрев, то паять детали необходимо как можно быстрее, не больше пяти секунд. При этом нужно использовать паяльник малой мощности. Температура жала не должна превышать 260 градусов.

    При пайке дополнительно можно использовать медицинский пинцет. Пинцетом светодиод зажимается ближе к корпусу, благодаря чему при пайке создается дополнительный отвод тепла от кристалла. Чтобы ножки светодиода не сломались, их необходимо гнуть не сильно. Они должны оставаться параллельно друг другу.

    Для того чтобы избежать перегрузки либо замыкания, устройство нужно снабдить предохранителем.

    Схема плавного включения светодиодов

    Схема плавного включения и выключения светодиодов – популярная среди других, ею интересуются автовладельцы, желающие тюнинговать свои машины. Данная схема применяется для подсветки салона автомобиля. Но это не единственное ее применение. Она используется и в других сферах.

    Простая схема плавного включения светодиода должна состоять из транзистора, конденсатора, двух резисторов и светодиодов. Необходимо подобрать такие токоограничивающие резисторы, которые смогут пропускать ток в 20 мА через каждую цепочку светодиодов.

    Схема плавного включения и выключения светодиодов не будет полноценной без наличия конденсатора. Именно он позволяет ее собрать. Транзистор должен быть p-n-p-структуры.

    А ток на коллекторе не должен быть меньше 100 мА.

    Если схема плавного включения светодиодов собрана правильно, то на примере салонного освещения автомобиля за 1 секунду будет проходить плавное включение светодиодов, а после закрытия дверей – плавное выключение.

    Поочередное включение светодиодов. Схема

    Одним из световых эффектов с применением светодиодов является поочередное их включение. Он именуется бегущим огнем. Работает такая схема от автономного питания. Для ее конструкции применяется обычный переключатель, который подает напряжение питания поочередно на каждый из светодиодов.

    Рассмотрим устройство, состоящее из двух микросхем и десяти транзисторов, которые вкупе составляют задающий генератор, управление и саму индексацию.

    С выхода задающего генератора импульс передается на блок управления, он же десятичный счетчик. Затем напряжение поступает на базу транзистора и открывает его.

    Анод светодиода оказывается подключен к плюсу источника питания, что приводит к свечению.

    Второй импульс формирует логическую единицу на следующем выходе счетчика, а на предыдущем появится низкое напряжение и закроет транзистор, в результате чего светодиод погаснет. Далее все происходит в той же последовательности.

    Оцените статью
    Просто о технологиях
    Добавить комментарии

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: