Простой бп своими руками

Как собрать блок питания с регуляторами своими руками

Простой бп своими руками

Для радиолюбителей, да и вообще современного человека, незаменимой вещью в доме является блок питания (БП), ведь он имеет очень полезную функцию — регулирование напряжения и тока.

При этом мало кто знает, что сделать такой прибор при должном старании и знаниях радиоэлектроники вполне реально своими руками. Любому радиолюбителю, которому нравится возиться дома с электроникой, самодельные лабораторные блоки питания позволят заниматься своим хобби без ограничений. Как раз о том, как своими руками сделать регулируемый тип блок питания расскажет наша статья.

Что нужно знать

Блок питания с регулировкой тока и напряжения в современном доме – необходима вещь. Этот прибор, благодаря своему специальному устройству, может преобразовать напряжение и ток, имеющееся в сети до того уровня, который может потреблять конкретный электронный прибор. Вот примерная схема работы, по которой можно своими руками сделать подобный прибор.

Схема

Но готовые БП стоят достаточно дорого, для того чтобы покупать их под конкретные нужды. Поэтому сегодня очень часто преобразователи для напряжения и тока изготавливаются своими руками.

Профессионалы могут легко сделать мощный блок питания, в то время как новичкам и любителям подойдет для начала простой тип прибора. При этом схема, в зависимости от сложности, может использоваться самая разная.

Что нужно учитывать

Детали

Регулируемый блок питания представляет собой универсальный преобразователь, который может использоваться для подключения любой бытовой или вычислительной аппаратуры. Без него ни один домашний прибор не сможет функционировать нормально.
Такой БП состоит из следующих составных частей:

  • трансформатор;
  • преобразователь;
  • индикатор (вольтметр и амперметр).
  • транзисторы и прочие детали, необходимые для создания качественной электрической сети.

Схема, приведенная выше, отражает все компоненты прибора.
Кроме этого, данный тип блока питания должен обладать защитой на сильный и слабый ток. В противном случае любая внештатная ситуация может привести к тому, что преобразователь и подключенный к нему электрический прибор просто перегорит.

К этому результату также может привести неправильная спайка компонентов платы, неправильное подключение или монтаж.
Если вы новичок, то для того чтобы сделать регулируемый тип блока питания своими руками лучше выбирать простой вариант сборки. Одним из простых видов преобразователя является 0-15В БП.

Он имеет защиту от превышения показателя тока в подключенной нагрузке. Схема для его сборки размещена ниже.

Простая схема сборки

Это, так сказать, универсальный тип сборки. Схема здесь доступна для понимания любому человеку, который хотя бы раз держал в руках паяльник. К преимуществам этой схемы можно отнести следующие моменты:

  • она состоит из простых и доступных деталей, которые можно отыскать либо на радиорынке, либо в специализированных магазинах радиоэлектроники;
  • простой тип сборки и дальнейшей настройки;
  • здесь нижний предел для напряжения составляет 0,05 вольт;
  • двухдиапазонная защита для показателя тока (на 0,05 и 1А);
  • обширный диапазон для выходных напряжений;
  • высокая стабильность в функционировании преобразователя.

Диодный мост

В этой ситуации с помощью трансформатора напряжение будет обеспечиваться в диапазоне на 3В больше, чем имеется максимальное требуемое напряжение для выхода. Из этого следует, что блок питания, способный регулировать напряжение в пределах до 20В, нуждается в трансформаторе минимум на 23 В.

Конденсатор для фильтра 4700мкф позволит чувствительной к помехам по питанию техники не давать фон. Для этого потребуется компенсационный стабилизатор, имеющий коэффициент подавления для пульсаций более 1000.
Теперь, когда с основными аспектами сборки мы разобрались, необходимо обратить внимание на требования.

Требования к прибору

Чтобы создать простой, но одновременно качественный и мощный блок питания с возможностью регулировать напряжение и ток своими руками, необходимо знать, какие требования существуют к такому типу преобразователей.
Эти технические требования выглядят так:

  • регулируемый стабилизированный выход на 3–24 В. При этом нагрузка по току должна составлять минимум 2 А;
  • нерегулируемый выход на 12/24 В. При этом предполагается большая нагрузка по току.

Чтобы выполнить первое требование, следует использовать в работе интегральный стабилизатор. Во втором случае выход необходимо сделать уже после диодного моста, так сказать, в обход стабилизатора.

Приступаем к сборке

Трансформатор ТС-150–1

После того как вы определились с требованиями, которым должен отвечать ваш постой блок питания регулируемого типа, а также была выбрана подходящая схема, можно начинать саму сборку. Но прежде всего запасемся нужными нам деталями.
Для сборки вам понадобятся:

  • мощный трансформатор. Например, ТС-150–1. Он способен выдавать напряжение в 12 и 24 В;
  • конденсатор. Можно использовать модель на 10000 мкФ 50 В;
  • микросхема для стабилизатора;
  • обвязки;
  • детали схемы (в нашем случае — схема, которая указана выше).

После этого по схеме собираем своими руками регулируемый блок питания в точном соответствии со всеми рекомендациями. Последовательность действий должна быть соблюдена.

Готовый БП

Для сборки БП используются следующие детали:

  • германиевые транзисторы (в большинстве своем). Если вы захотите заменить их на более современные кремневые элементы, тогда нижний МП37 обязательно должен остаться германиевым. Здесь используются МП36, МП37, МП38 транзисторы;
  • на транзисторе собирается токоограничительный узел. Он обеспечивает отслеживание падения на резисторе напряжения.
  • стабилитрон Д814. Он определяет регулировку максимального выходного напряжения. На себя он забирает половину от выходного напряжения;
  • нижний предел в собранном блоке питания имеет показатель напряжения всего 0,05 В. Такой показатель редкость для более сложных схем сборки преобразователя;
  • стрелочные индикаторы отображают показатели тока и напряжения.

Детали для сборки

Для размещения всех деталей необходимо выбрать стальной корпус. Он сможет экранировать трансформатор и плату блока питания. В результате вы избежите ситуации появления различного рода помех для чувствительной аппаратуры.

Получившийся преобразователь можно спокойно использовать для питания любой бытовой аппаратуры, а также экспериментов и проверок, проводимых в домашней лаборатории. Также такой прибор можно применять для оценки работоспособности автомобильного генератора.

Заключение

Используя простые схемы для сборки регулируемого типа блока питания, вы сможете набить руку и в дальнейшем делать своими руками более сложные модели.

Не стоит брать на себя непосильный труд, так как в конечном итоге вы можете не получить желаемый результат, а самодельный преобразователь будет работать неэффективно, что негативным образом может сказаться как на самом приборе, так и на функциональности электроаппаратуры, подключенной к нему.

Если же все сделать правильно, то на выходе вы получите отличный блок питания с регулировкой напряжения для своей домашней лаборатории или других бытовых ситуаций.

:: КАК СДЕЛАТЬ БЛОК ПИТАНИЯ ::

Простой бп своими руками

   В начале далёких 90-х годов прошлого века в магазинах уже продавалось достаточно много портативных (по тем временам) электронных устройств (кассетных плееров, игровых приставок и прочего). А вот батареек как раз не было.

И далеко не всё комплектовалось блоками питания.

И вот у меня и ещё одного одноклассника родилась идея сделать универсальный блок питания, на котором можно было бы регулировать выходное напряжение, и вставлять в него разные шнуры для разных устройств.

Схема блока питания на двух транзисторах

   Схема на устаревших деталях, но если у вас есть возможность достать поновее – посмотрите на другую.

Руководитель кружка по радиоэлектронике, куда мы с другом ходили, толи где-то нашёл, толи сам нарисовал нам принципиальную схему блока питания и отдал нам, что бы мы начали искать радиодетали. Тогда их можно было купить в магазинах, но далеко не все.

Но большинство деталей были доступны, а которых не нашли, он выдал нам сам. Самым сложным оказалось найти нужные трансформаторы (а в схеме был и он). 

   Следующей задачей было спроектировать печатную плату и изготовить её. Для большего интереса каждый проектировал плату себе сам. Помню, сначала хотел нарисовать двустороннюю плату для экономии места, но радиодетали были таких размеров, что и на одной стороне всё прекрасно разместилось.

   Спроектировали, руководитель одобрил каждому, выдал заготовку, ножовку, баночки краски, трубочки и пипетки. Выпилили, через кальку и иголку нарисовали дорожки и стали покрывать их краской, что бы остальное вытравить. Ох и наглотались же мы тогда этой краски!

   После травления нужно было рассверлить отверстия для ножек деталей. Первым сел мой друг, руководитель дал ему какую-то микродрель самодельную и включил её в блок питания специальный. Но этого не видел, был чем-то занят. А вот когда пришла моя очередь, воткнул эту дрель в обычную розетку.

И очень красиво полетел патрон после того, как нажал кнопку, чтобы проверить, работает она или нет! Хорошо так вверх полетел (дрель держал патроном вверх), а потом вкрутился в парту. Сейчас-то понимаю, почему учитель так ругался, а тогда было весело.

В общем через неделю, после того как он перемотал моторчик дрели, свои отверстия просверлил и началась рутинная пайка.

   Самым интересным было собрать корпус для всего этого устройства. Из листа пластика мы выпилили стенки, потом паяльником наплавили в углы пластмассы, что бы потом туда винты вкручивать. Ну и конечно отверстия для входа, выхода, ручки регулировки.

Друг мой два раза ошибся с отверстием для ручки регулировки и у на его корпусе была дополнительная вентиляция.

Зато он вместо обычного регулируемого резистора где-то достал многопозиционный переключатель, напаял туда обычных сопротивлений и у него получился отличный прерывистый переключатель, а у меня – плавный. Но этот не беда. В общем, собрали мы блоки питания.

Черные ящики весили килограмма по 2, но мы были счастливы. Потом за всё время воспользовался им несколько раз, но это уже не важно. И сейчас где-то на балконе пылится это чудо, сделанное собственными руками.

Поделитесь полезными схемами

    После нажатия на кнопку, паяльник разогревается в течении 5 секунд, то есть по принципу мы замкнули выводы вторичной обмотки трансформатора, в следствии которого проволока (жало) нагревается.

    Для индукционной передачи тока, нам нужен сам передатчик и приемник. В качестве передатчика использована простейшая схема, которая состоит из контура и зарядного устройства для мобильного телефона.

   Блок предназначен для питания всех устройств комплекса учебных пособий по информатике и вычислительной техники. Устройства, собранные на полупроводниковых приборах (транзисторы, тринисторы, микросхемы) и электромагнитных реле, питаются от источников постоянного напряжения. Как правило, отклонение напряжения от нормального значения не должны выходить за границы отдельных допусков (например, для микросхем серии К155 питающее напряжение должно составлять 5 В).

Cамодельный блок питания на 12 вольт

Простой бп своими руками

Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:

  • Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
  • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
  • Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.

Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.

Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками. Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.

Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.

Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.

Компоновка прибора

Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено.

При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера.

Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.

На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.

Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс.

Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус.

Или их можно назвать полюсами – верхним и нижним.

Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

Проблемы простого блока питания с нагрузкой

Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

  • Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
  • Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
  • Использовать более мощные блоки питания или блоки питания с большим запасом мощности.
  • Блок питания со стабилизатором на микросхеме

    На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.

    Блок питания со стабилизатором на микросхеме

    Это уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.

    Блок питания повышенной мощности

    Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

    Транзисторы Дарлингтона типа TIP2955

    Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

    На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

    Подключение одного составного транзистора Дарлингтона

    Внимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке.

    При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать.

    Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

    Простой БП своими руками

    Простой бп своими руками

    Электропитание

    Главная  Радиолюбителю  Электропитание

    Блок питания (БП) – это устройство или узел, являющийся вторичным источником тока. В большинстве современной техники, используемой в быту, БП требуется для того, чтобы из переменного сетевого электричества получить постоянный ток заданных параметров.

    Так, например, БП персонального компьютера формата ATX может выдавать не одно напряжение, а сразу несколько для питания разных узлов (+3.3, +5, +12 В).

    В радиотехнике аналогичная ситуация. Параметры питания зависят от типа и вида элементов, используемых в составе схем, и стоящих перед конечным изделием задач.

    Ниже рассмотрим простейшие блоки питания, которые можно изготовить своими руками.

    Диодный мост

    Проще, наверное, уже некуда. Диодный мост может использоваться в любых схемах для преобразования переменного тока в постоянный, часто служит основой для более сложных схем с фильтрами и т.п.

    Выглядит схема так.

    F1 и F2 – предохранители.

    Tr – трансформатор понижающий. Параметры этого элемента зависят от требуемых выходных параметров схемы. Например, для БП на 12 В можно использовать ТП-30 или универсальный трансформатор ТАН1-220-50. Он имеет выводы на 28, 6,3 и 5 В.

    Таким образом, необходимо последовательно соединить или две обмотки по 6,3 В (сумма 12,6 В), или одну на 6,3 и одну на 5 В (сумма 11,3 В). Прирост мощности можно получить при параллельном подключении обмоток.

    В качестве альтернативы можно намотать трансформатор самостоятельно или взять из другого блока питания, подходящего по характеристикам.

    C2 – конденсатор, выполняет роль простейшего фильтра.

    Принцип работы диодного моста наглядно отображен на картинках ниже.

    Тогда на выходе мы получаем следующий график напряжения.

    Мостовую схему можно собрать самостоятельно, а можно приобрести готовым элементом в одном корпусе. Например, DB207 (это мост на 2А, с напряжением в цепи до 1000В) или аналоги, лучше всего – рассчитанные на 3 и более Ампер.

    При таком количестве радиоэлементов, по большому счету, можно спаять схему даже без печатной платы.

    Простой БП на транзисторах

    Если вышеуказанную схему немного дополнить и расширить:

    • добавить туда стабилизатор напряжения,
    • возможность регулировки выходного напряжения,
    • защиту от короткого замыкания,

    то получится схема, аналогичная изображенной ниже.

    Для удобства приведем все используемые элементы в одной таблице.

    Элемент
    Расшифровка
    Маркировка/номинал
    Кол-во

    F1, F2
    Предохранитель
    2

    Tr1
    Трансформатор
    ТАН1-220-50
    1

    VD1
    Стабилитрон
    Д814Д
    1

    VDS1
    Диодный мост
    DB207
    1

    VT1
    Биполярный транзистор
    КТ315Б
    1

    VT2, VT4
    Биполярный транзистор
    КТ815Б
    2

    VT3
    Биполярный транзистор
    КТ805БМ
    1

    C1
    Электролитический конденсатор
    100мкФ 25В
    1

    C2, C4
    Электролитический конденсатор
    2200мкФ 25В
    2

    R1
    Переменный резистор
    10кОм

    R2
    Резистор
    0,45Ом
    1

    R3
    Резистор
    1кОм
    1

    R4
    Резистор
    100 Ом
    1

    В качестве примечаний:

    1. Переменный резистор R1 и R2 – на схеме использованы проволочные (нихромовые), однако, они могут быть заменены на обычные резисторы.

    2. Транзисторы VT2 и VT3 легко заменяются составным, таким как КТ827.

    3. Указанные транзисторы (2 и 3) обязательно необходимо вынести на радиатор (будут греться).

    С таким количеством элементов логично их расположить на печатной плате.

    Компьютерный БП

    Питание материнской платы – более ответственный и сложный процесс, и потому схема блока питания намного сложнее.

    Типовая схема изображена ниже.

    Регулируемый блок питания на транзисторах

    Простой бп своими руками

    Простой регулируемый блок питания радиолюбительских устройств на двух транзисторах.

    Одним из основных приборов мастерской радиолюбителя является лабораторный блок питания. Собирая какую-либо схему, радиолюбителю для ее отладки, проверки необходим источник питания.

    В этой статье, на сайте Радиолюбитель, мы рассмотрим следующую радиолюбительскую схему: простой в сборке, не имеющий дефицитных деталей источник питания для радиолюбительских устройств.

    Данный блок питания, в зависимости от примененных деталей, позволяет получить на выходе регулируемое напряжение 0-12V, при силе тока до 1,5 А.

    Рассмотрим электрическую схему.

    Трансформатор Tr1 понижает сетевое напряжение 220V до напряжения 15-18V которое поступает на выпрямитель VDS1 собранный по мостовой схеме из четырех диодов. Конденсатор С1 сглаживает пульсации выпрямленного напряжения.

    Далее напряжение поступает на стабилизатор напряжения выполненный на стабилитроне VD1 и составном эмиттерном повторители на транзисторах VT1 и VT2.

    С помощью переменного резистора R6 регулируется напряжение на выходе блока питания.

    Применяемые детали:

    Трансформатор – любой, со вторичной обмоткой рассчитанной на выходное напряжение 15-18 вольт и силу тока  -2 – 3 ампера (т.е. мощность трансформатора должна быть около 40 ватт).

    Можно использовать трансформатор от старых советских телевизоров ТВК-110Л, но при этом ток нагрузки должен быть менее 1 ампера.
    Стабилитрон – Д814Г.

    В принципе можно использовать любой стабилитрон из этой серии, что может повлиять только на максимальное выходное напряжение. Ниже приводится таблица с характеристиками стабилитронов серии Д814:

    Внешний вид стабилитрона:

    Транзистор VT1 – любой из серии КТ315 (А-Е). Ниже приводятся характеристики транзисторов этой серии:

    Внешний вид транзистора:

    Транзистор VT2 – КТ815. Для получения большего выходного тока можно применить транзисторы из  серии КТ817. Транзистор обязательно должен располагаться на радиаторе не менее 10-15 кв.см. Ниже приведены характеристики транзисторов:

    Внешний вид тразистора:

     Диодный мост собран на диодах Д226:

    Внешний вид диода:

    Если в схеме будет использован более мощный транзистор VT2, то диоды можно заменить на КД202: Внешний вид диода:

     Конденсатор С1 – электролитический емкостью не менее 2200 микрофарад и рабочее напряжение не менее 25 вольт. Можно использовать конденсаторы меньшей емкостью соединив их параллельно.

    Данная схема не нуждается в налаживании, но надо иметь ввиду, что в схеме нет защиты от перегрузки и чтобы не спалить детали не подключайте к блоку питания схемы с током нагрузки более 1,5 ампера. Монтаж схемы можно выполнить навесным способом.

    Самодельный блок питания для светодиодной ленты. Переделка своими руками из старых БП

    Простой бп своими руками

    Часто нужно запитать свои самоделки, а блока питания на нужное напряжение нет. Конечно, для проверки можно воспользоваться батарейками. Подобрать нужное количество, для получения нужного напряжения, но для постоянной работы такой подход нерационален. Давайте рассмотрим варианты изготовления блоков питания для светодиодов от простого и дешевого к более сложному и дорогому.

    Бестрансформаторный блок питания для светодиодов

    Суть такого блока заключается в использовании балластного (гасящего) конденсатор. На нашем сайте есть подробная статья о таком БП, в которой вы можете найти калькулятор для расчёта конденсатора. В общем виде схема выглядит следующим образом:

    Такой вариант имеет массу недостатков:

  • Нет стабилизации выходного напряжения;
  • нет гальванической развязки (трансформатора);
  • нет разряжающего резистора на балластном конденсаторе, поэтому есть риск поражения электрическим током от C1.
  • Приняв эти недостатки и доработав схему, получаем следующее бестрансформаторное питание светодиодов на 12В.

    Вместо D1, микросхемы линейного стабилизатора L7812, может быть установлена любая другая на необходимое напряжение (7805 и т.д. а также отечественные стабилизаторы КРЕН).

    Альтернативный вариант схемы БП для светодиодной ленты, при сборе своими руками – вместо линейного стабилизатора использовать стабилитрон или параметрический стабилизатор из стабилитрона и транзистора.

    Преимуществом такого решения есть гибкость в настройке напряжения стабилизации, ведь если у вас нет подходящего стабилитрона, вы можете два других соединить последовательно и добиться нужной величины напряжения.

    Для изготовления самодельного блока питания для светодиодной ленты подойдёт отечественный стабилитрон серии Д818Д, рассчитанный на напряжение порядка 12-13 В.

    Другой способ стабилизации – собрать стабилизатор тока на двух транзисторах. Ток стабилизации задается резистором R2.

    Стабилизатор тока стремится выдать заданный ток, это оптимальный вариант для бестрансформаторного питания отдельных светодиодов.

    Переделка готовых БП для работы со светодиодами

    Начнем с самых распространённых блоков питания – зарядных устройств от мобильного телефона. Выходное напряжение от 5 до 9 вольт постоянного тока, стабилизированная схема и гальваническая развязка от сети. Это делает использование подобных схем блока питания для светодиодной ленты безопаснее предыдущего варианта.

    Самым простым вариантом будет использование токоограничительного резистора, для удобства есть онлайн калькулятор для расчета резистора.

    Схемы дешевых блоков питания от зарядок

    Для начала взгляните на схемы от различных зарядных устройств, с виду они отличаются, а принципиально – идентичны (картинки можно листать).

    Большинство зарядных устройств для мобильного телефона построены на базе блокинг-генератора, или как его еще называют – автогенератора.

    Выпрямленное напряжение поступает на схему, состоящую из силового транзистора, который управляется через базовую обмотку и резистор смещения базы, трансформатора, и цепи обратной связи. Это простейший импульсный блок питания. Подойдет как схема для блока питания светодиодной ленты, если её немного модернизировать.

    Принцип работы

    Обмотки трансформатора подключены таким образом, чтобы на базе транзистора и коллекторной обмотки, напряжения наводились в противофазе, иначе говоря «наоборот».

    Когда транзистор открывается до конца через резистор базы, нарастание тока в коллекторной обмотке прекращается и на базовой обмотке возникает противо-ЭДС, закрывающее транзистор.

    Ток в коллекторной цепи снижается, а после достижения нулевого значения процесс повторяется.

    Однако это описание очень упрощено, дано только для понимания общего принципа возникновения колебаний высокой частоты переменного тока на импульсном трансформаторе.

    Вы могли заметить, что на каждой из схем выше я обвел красным цветом один из элементов – это стабилитрон (диод Зенера). Он установлен как раз в цепи обратной связи по напряжению. Когда выходное напряжение достигает напряжения стабилизации, в работу вступает отрицательная обратная связь, которая закрывает транзистор.

    В более дорогих (см. вторую схему) обратная связь заведена через оптопару, это повышает надежность схемы в целом.

    Обобщенная схема блокинг-генератора изображена на рисунке ниже, все остальные компоненты в зарядных устройствах нужны для стабилизации (обратной связи), индикации, защиты от аварийных режимов работы и т.д.

    Делаем блок питания

    Раз стабилитрон имеет напряжение стабилизации — с его помощью осуществляется обратная связь. Значит, чтобы изменить выходное напряжение, нужно его заменить на другой по величине Uстаб.

    Выходное напряжение зарядного устройства приблизительно равно номиналу стабилизатора. Оно отличается от номинального на стабилитроне от 0,3 до 1В и зависит от некоторых особенностей схемы. Обратите внимание, в приведенных примерах стоят стабилитроны от 5 до 7 вольт.

    При изменении выходного напряжения изменяется и ток, который может выдать зарядное устройство. Причем изменение тока обратно-пропорционально величине изменения напряжения. Т.е. увеличив напряжение наполовину, допустим до 7,5 вольт, ток упадет в два раза.

    Чтобы своими руками сделать блок питания для светодиодов, нужно определиться как вы будете подключать нагрузку, чтобы сделать выводы о необходимом напряжении.

    Если вы собираетесь питать один светодиод или несколько соединенных параллельно, вам нужно выходное напряжение порядка 3-х вольт (как определить напряжение светодиода). Далее подобрать необходимый стабилитрон, например подобный – на 3,3В. При параллельном подключении не забудьте проверить напряжение через каждый из светодиодов и скорректировать его дополнительным резистором.

    Многие блоки питания, не только зарядки для мобильных, сделаны по этой схеме. Более мощные и дорогие модели (незначительно), и модели с другими силовыми схемами оборудованы несколько иной и более простой в настройке обратной связью. Зачастую которая выполнена на микросхеме TL431 (или любые другие буквы и «431» в названии).

    Эта интегральная микросхема выполняет роль обычного стабилитрона. Отличия в том, что TL431 – это регулируемый стабилитрон и имеет корпус с 3-мя выводами

    Выходное напряжение задается изменением соотношения резисторов R1 и R2 (см. следующую схему), далее размещена типовая схема блока питания с TL431. Кругом обведены резисторы, которые нужно подбирать для подстройки, формула подбора такова:

    Vout = 1 + (R1 / R2) * Vref, где Vref – приблизительно 2,5В

    3 варианта блока питания из зарядного

    Первый вариант. Вы можете сделать регулируемый блок питания таким образом: замените один из резисторов потенциометр, в зависимости от того куда вы его впаяете (вместо верхнего или нижнего) пределы регулировки будут изменяться.

    Идеальный вариант поставить последовательно постоянный резистор и потенциометр, выставив за счет постоянного минимальный уровень напряжения на выходе блока питания, воспользовавшись приведенной формулой.

    Описанными способами можно своими руками сделать блок питания для светодиодной ленты практически из любого старого блока питания, зарядного устройства и пр. Однако в некоторых случаях придется доматывать вторичную обмотку несколькими витками, этот способ несколько труднее и рассматривать его не будем.

    Вторая схема. Регулировка аналогична, на R7 и R5.

    Подобный блок питания, сделанный своими руками, превосходит бестрансформаторное питание светодиодов по всем параметрам. А что насчет цены – то не забывайте о том, что порывшись у себя в кладовой – вы наверняка найдете парочку заготовок.

    Третий вариант – это модернизировать или доделать старые трансформаторные блоки питания.

    Если выходное напряжение с диодного моста превышает 14 вольт, установите L7812 по указанной схеме и получите готовый БП для LED ленты, сделанный своими руками.

    Если вы хотите сделать блок питания для отдельных светодиодов, схема изменится только номиналом стабилизатора – нужно будет установить 3-хвольтовую модель (7803). Или собрать параметрический стабилизатор как было описано выше. Такой блок питания лучше чем первый рассмотренный, но хуже чем второй. Он больше и имеет меньший КПД.

    Блок питания для LED ленты из зарядного от ноутбука

    Блоки питания от ноутбуков, мониторов и другой бытовой и компьютерной техники имеют напряжение от 12 до 19 и более Вольт. Если напряжение 12В – отлично, это идеально для светодиодной ленты. Но как изменить выходное напряжение, если оно не подходит под ваши нужды?

    Вот такой регулируемый импульсный понижающий преобразователь напряжения выполнен на довольно старой надёжной и популярной микросхеме – LM2596. Модель, которая изображена на фото, имеет регулировку напряжения и тока, что позволяет его использовать как драйвер для мощных светодиодов, обеспечивающий очень качественное питание.

    На фотографии видно в обозначении сокращение ADJ (adjustable) – что говорит о том, что это регулируемая модель. В продаже есть готовые схемы и отдельные ИМС для работы с фиксированным выходным напряжением, а именно: 3В, 5В и 12В. В вариантах на ток 2 и 3 Ампера каждая, имеют немного упрощённую схему.

    Назначение элементов описано здесь, разница лишь в том, что на схеме выше отсутствует стабилизация тока и нет регулировки напряжения, как в предыдущем фото.

    Понижающие преобразователи напряжения на LM2596 довольно популярны. Найти их можно в магазинах радиодеталей, но на Aliexpress можно купить в разы дешевле.

    Схема их подключения проста, входные и выходные контакты подписаны, некоторые платы поставляются с запаянными зажимными клеммами. Подключите его к готовому БП на более высокое напряжение (от ноутбука, например) и блок питания для светодиодных ламп готов.

    Такой вариант подходит для начинающих, если вы не хотите влезать в схему с паяльником или нет возможности добраться до элементов блока для модификации схемы (в случае трудно разбираемого корпуса и когда детали залиты компаундом).

    Ремонт блока питания светодиодной ленты

    Многие блоки питания, рассчитанные на среднюю и большую мощность (30 и более Вт), построены на интегральном драйвере со встроенным силовым ключом, типа KA5l0365, FSDH065RN и т.д.

    Такие решения применяются и в бытовой технике, например, в блоках питания DVD проигрывателей.

    Такие микросхемы взаимозаменяемы, стоит только определить цоколевку сгоревшего чипа и установить тот, который вам удалось найти.

    Для ремонта блока питания для светодиодной ленты на 12В (и не только), схема почти не изменяется. Нужно совершить подключение подобно тому, что изображено ниже. Разумеется, с учетом распиновки.

    Более сложные и надежные блоки построены на ШИМ-контроллерах:

    • TL494;
    • KIA494AP;
    • MB3759;
    • KA7500;

    Они аналогичны, ниже схема блока питания для светодиодной ленты с их использованием:

    ШИМ-контроллер расположен в нижней части схемы, с помощью P1 (справа на схеме) осуществляется регулировка. Подбирая его величину, можно добиться нужного напряжения на выходе, чем-то похоже на регулировку 431 стабилизатора.

    Даже если на вашем блоке нет потенциометра или подстроечника, вы можете его установить самостоятельно, заменив постоянный, аналогично приведенной мной схеме.

    При ремонте смотрите на сигнал на выходе ШИМ, силовые ключи Т12 и Т13 подключенные к выводам 8 и 11 TL494.

    На картинке ниже более наглядно изображена регулировка, потенциометр подключается к 1 вывод ИМС.

    Таким образом вы можете своими руками экспериментальным путем сделать питание для светодиодной ленты из любого БП на 494 ШИМ-контроллере.

    Практически все блоки питания можно своими руками перенастроить в узких пределах на необходимое напряжение питания светодиодной ленты. При этом вы обойдетесь минимальными затратами.

    Оцените, пожалуйста, статью. Мы старались:) (3

    Как сделать блок питания 12 В своими руками: пошаговая инструкция выполнения работ

    Простой бп своими руками

    Блоки питания различаются по конструкции, технических характеристикам и назначению

    Блок питания является вторичным источником энергии для технических устройств, преобразующим напряжение питающей электрической сети в их рабочее напряжение.

    Наиболее востребованными являются блоки питания, у которых первичное напряжение – это переменное напряжение бытовой электрической сети, равное 220 Вольт, а вторичное − преобразуемое в постоянное, равное 24/12/5/3,3 V. По принципу преобразования напряжения блоки питания (БП) подразделяются на два вида:

    • трансформаторные – когда преобразование осуществляется посредством понижающего трансформатора, они называются линейными;
    • импульсные – преобразование осуществляется благодаря наличию электронных компонентов, обеспечивающих преобразование напряжения, они называются инверторными.

    Если в схеме БП предусмотрен стабилизатор выходного напряжения, то такое устройство называется стабилизированным блоком питания.

    Блоки питания для светодиодных лент

    Основными техническими характеристиками, определяющими возможность использования подобных технических устройств, являются:

    • электрическая мощность, измеряемая в Ваттах (Вт или В×А);
    • напряжение на входе и выходе, измеряемое в Вольтах (В);
    • выходной ток, измеряемый в Амперах (А);
    • коэффициент полезного действия – параметр полезный при использовании БП большой мощности, измеряется в %;
    • наличие элементов защиты внутренних электрических цепей от перегрузок и токов короткого замыкания.

    Блоки питания с вторичным напряжением в 12 Вольт импульсного типа используются для подключения к бытовой электрической сети:

    • персональных компьютеров различного типа – для зарядки их аккумуляторных батарей и работы непосредственно от сети;

    Блок питания для ноутбука

    • для зарядки электронных гаджетов, в том числе сотовых телефонов и смартфонов, плееров и видеокамер, а также прочих устройств, имеющих в своей конструкции аккумуляторные батареи;
    • для зарядки ручного переносного электрического инструмента – шуруповёрт, болгарка и т.д.;
    • для подключения LED светотехнических приборов (светодиодные светильники и ленты);
    • для использования прочих устройств, предполагающих работу от сети постоянного тока с напряжением 12 В, – автомагнитола или автоприёмник в условиях дома или гаража.

    Принципиальная схема и принцип работы блока питания зависит от вида устройства, и поэтому необходимо рассмотреть их отдельно:

    Аналоговый вид БП имеет в своей схеме понижающий трансформатор, обеспечивающий величину вторичного напряжения в заданных величинах, и диодный мост, служащий для его выпрямления. Простейшая схема такого устройства выглядит следующим образом:

    Принципиальная схема аналогового блока питания

    Конденсаторы, установленные в схеме, обеспечивают сглаживание импульсов напряжения на выходе блока питания.

    Инверторный вид БП работает за счёт электронных компонентов, входящих в схему устройства. Напряжение питающей сети подаётся на входной диодный мост, а его пики сглаживаются установленными конденсаторами. После этого сигнал преобразуется в прочих элементах схемы (транзисторы, микросхема, тиристоры и т.д.) и подаётся на импульсный трансформатор.

    Трансформаторы данного вида изготавливаются на основе ферромагнетных материалов, поэтому имеют малые габаритные размеры, позволяющие минимизировать размеры БП. Напряжение, полученное после трансформации, подаётся к нагрузке (выходам блока питания). Такой тип БП называется схемой с гальванической развязкой.

    Импульсный блок питания на интегральной микросхеме и с построечными резисторами

    Существуют схемы БП без использования гальванического соединения. В этом случае входной сигнал сразу подаётся на фильтр нижних частот.

    Мощность БП является одной из главных технических характеристик, определяющих возможность подключения к нему той или иной нагрузки. Мощность поэтому может быть рассчитана разными способами:

    Для светодиодных лент.

    В этом случае расчёт выполняется следующим образом:

    • за основу берётся мощность в 1 метра LED-ленты, указываемая производителем на упаковке;
    • определяется её длина;
    • эти значения перемножаются, и полученное выражение увеличивается на 30%.

    Увеличение на 30% обеспечивает необходимый запас мощности блока питания. Этот расчёт можно выразить следующей формулой:

    Pблока = Pуд × Lленты × Kзапаса, где:

    Pблока – электрическая мощность блока питания;

    Pуд − электрическая мощность 1 метра светодиодной ленты;

    Lленты – длина ленты;

    Kзапаса — коэффициент запаса мощности.

    Внешний вид блоков питания персонального компьютера

    Для персонального компьютера.

    При необходимости определить мощность БП персонального компьютера следует знать мощности всех элементов устройств, входящих в его комплект. Это непростая задача, поэтому существуют специальные программы и онлайн-калькуляторы, служащие для выполнения такого расчёта. Вот некоторые из них:

    • OuterVision® – калькулятор, ссылка для скачивания: https://outervision.com/power-supply-calculator
    • Компания «Enermax», калькулятор питания − ссылка для скачивания: http://www.enermax.outervision.com/index.jsp
    • MSI – калькулятор источника питания, ссылка для скачивания: https://ru.msi.com/power-supply-calculator
    • KSA Power Supply Calculator WorkStation – ссылка для скачивания: http://ksa-soft.ru/soft/10-ksa-power-supply-calculator-workstation.html

    Для зарядки электрического инструмента и электронных гаджетов.

    Когда необходимо определить мощность БП для зарядки шуруповёрта, смартфона или иного электронного устройства, необходимо знать их электрическую мощность и учесть коэффициент запаса. Это можно отразить следующей формулой:

    Pблока = Pустройства × Kзапаса

    Универсальный адаптер питания 12 В

    Для выпрямления переменного напряжения бытовой электрической сети в схемах блоков питания и прочих электронных устройств используют диоды, собираемые по мостовой схеме. Схематично полупроводниковый диод выглядит следующим образом.

    Устройство полупроводникового диода

    Для устройства диодного моста используется 4 однотипных диода, которые соединяются определённым образом, приведённым на следующей схеме. Их технические характеристики должны соответствовать величине протекающего через них тока, а также величине допустимого обратного напряжения.

    Схема соединения диодов по мостовой схеме

    Для стабилизации напряжения в БП используются электролитические конденсаторы большой ёмкости и стабилитроны.

    Конденсаторы сглаживают сигналы напряжения, которые имеют полусинусоидальную форму практически до прямой линии.

    Чем больше ёмкость конденсатора, тем сигнал на выходе более правильной формы и стремится к прямой линии. Стабилитроны обеспечивают постоянство напряжения на выходе блока питания.

    Существует большое количество различных схем блоков питания, имеющих различные технические характеристики и собранных на различных электронных компонентах. Ниже представлена схема импульсного БП с вторичным напряжением 12 Вольт.

    Принципиальная схема импульсного блока питания

    При самостоятельном изготовлении подобных устройств необходимо помнить, что для обеспечения заданной пульсации напряжения на выходе ёмкость конденсаторов должна приниматься из расчёта 1 мкФ на 1 Вт выходной мощности. Электролитические конденсаторы должны быть рассчитаны на напряжение не менее 350 В. Оптимальное соотношение мощности БП и технических характеристик электронных компонентов приведено в следующей таблице:

    Блок питания
    Элементы схемы

    Мощность, кВт
    Ток, А
    Ток диода, А
    Ёмкость конденсатора, мкФ

    0,1
    0,4
    0,2
    100

    0,2
    0,8
    0,4
    200

    0,3
    1,2
    0,6
    300

    0,5
    2
    1
    500

    1
    4
    2
    1 000

    2
    8
    4
    2 000

    3
    12
    6
    3 000

    5
    20
    10
    5 000

    Работу по изготовлению БП можно разбить на несколько этапов: подготовительный, монтаж и проверка работоспособности. В данной статье рассмотрим изготовление блока питания по схеме, приведённой на рисунке № 10.

    Подготовительный этап

    В этот период рассчитывается мощность блока питания. Она должна быть достаточной для его использования с нагрузкой, планируемой к подключению. Выбирается вид и схема БП (см. рисунок № 10), после чего приобретаются необходимые комплектующие. В рассматриваемом случае это:

    • PTC термистор;
    • два конденсатора из расчёта 1 мкФ на 1 Вт мощности;
    • диодный мост (диоды должны соответствовать по напряжению и току);
    • драйвера − IR2152 (IR2153, IR2153D);
    • полевые транзисторы − IRF740, IRF840;
    • трансформатор (можно использовать б/у от ПК);
    • диоды, устанавливаемые на выходе, серии HER.

    Монтаж блока питания

    Пошаговая инструкция по изготовлению импульсного БП по выше приведённой схеме выглядит следующим образом:

    Скриншот
    Выполняемая операция

    Рисуется схема печатной платы (обозначена стрелкой).

    Печатная плата изготавливается, для этого:

    • используется фольгированный диэлектрик;
    • составленный ранее рисунок переносится на заготовку платы;
    • выполняется протравка;
    • засверливаются отверстия, служащие креплением для элементов схемы.

    Выполняется установка диодов и термистора.

    Устанавливаются конденсаторы.

    Устанавливаются драйвера.

    Монтируются полевые транзисторы.
    При креплении к радиатору, используются специальные изоляционные прокладки и шайбы.

    Устанавливается трансформатор.

    Монтируются диоды «на выходе».

    Все элементы, установленные на плате, пропаиваются.

    Электрическая схема готова.

    Изготавливается корпус.

    Монтажная плата помещается в корпус и закрепляется в нём.

    Проверка работоспособности

    Когда БП собран, необходимо его проверить, для этого:

    • к выходу блока питания подключается нагрузка;
    • БП включается в электрическую сеть.

    В случае если подключённая нагрузка работает нормально: LED-светильники излучают свет, гаджеты и инструмент заряжаются, а прочая техника работает – значит, монтаж выполнен успешно. Ещё один способ изготовления блока питания − это размещение всех элементов устройства на ДИН-рейке.

    Дин-рейка – это металлическая профилированная полоса, предназначенная для крепления электрических приборов и элементов электрических схем.

    При использовании ДИН-рейки отпадает потребность в изготовлении монтажной платы, однако конструкция получается более объёмная, т.к. соединение между элементами схемы приходится выполнять при помощи соединительных проводов.

    Блок питания HTS-75-12-FA (12 V)

    При изготовлении блока питания 12 В своими руками для подключения шуруповёрта к электрической сети необходимо учитывать следующие нюансы, связанные с его использованием:

  • Напряжение на выходе должно быть 18–19 В, в противном случае мощность устройства значительно снизится.
  • Электронные компоненты схемы БП должны соответствовать номинальному току работающего шуруповёрта.
  • Размер собираемого блока должен быть таким, чтобы разместиться в корпусе демонтируемого аккумулятора (в случае изготовления встроенной конструкции).
  • В остальном этапы изготовления аналогичны, как и в случае отдельно размещаемого варианта исполнения БП.

    Блоки питания продаются в магазинах бытовой электроники, офисной техники, а также в организациях, специализирующихся на их ремонте. Кроме этого, в интернете также есть предложения различных компаний, предлагающих к реализации БП различной направленности.

    Блок питания DC-12V, 20.8А, 250 Вт в водонепроницаемом корпусе, степень защиты − IP67

    Стоимость БП зависит от их технических характеристик и типа исполнения, определяющих возможность использования этого устройства. Чем выше мощность и степень защиты – тем больше цена. Она может составлять от нескольких сотен до нескольких тысяч рублей. Наиболее дешёвые модели:

    • ARDV-05-12A (12V, 0,4A, 5W) – 200 рублей;
    • ARDV-12-12AW (12V, 1A, 12W) – 300 рублей;
    • ARDV-24-12A (12V, 2A, 24W) – 400 рублей.

    Модели в следующем сегменте:

    • APS-100L-12BM (12V, 8.3A, 100W) – 800 рублей;
    • APS-150-12BM (12V, 12.5A, 150W) – 1 000 рублей;
    • APS-250-12BM (12V, 20.8A, 250W) – 1 400 рублей.

    Наличие большого количества предложений на рынке вспомогательных устройств для бытовой техники и приборов позволяет выбрать блок питания в соответствии с предъявляемыми к нему требованиям. А наличие в свободном доступе различных схем, а также электронных компонентов позволяет изготовить БП своими руками даже начинающему любителю электроники, имеющему начальные навыки работы с паяльником.

    Share: