Запоминающие устройства

Запоминающие устройства

Запоминающие устройства

Аннотация: Рассматриваются основные характеристики запоминающих устройств, их классификация, иерархическое построение запоминающих устройств современных ЭВМ, построение ЗУ заданной организации на БИС ЗУ различного типа.

Памятью ЭВМ называется совокупность устройств, служащих для запоминания, хранения и выдачи информации.

Отдельные устройства, входящие в эту совокупность, называются запоминающими устройствами ( ЗУ ) того или иного типа [7].

Термин ” запоминающее устройство ” обычно используется, когда речь идет о принципе построения некоторого устройства памяти (например, полупроводниковое ЗУ, ЗУ на жестком магнитном диске и т.п.

), а термин “память” – когда хотят подчеркнуть выполняемую устройством памяти логическую функцию или место расположения в составе оборудования ЭВМ (например, оперативная память – ОП, внешняя память и т.п.).

В тех вопросах, где эти отличия не имеют принципиального значения, термины “память” и ” запоминающее устройство ” мы будем использовать как синонимы.

Запоминающие устройства играют важную роль в общей структуре ЭВМ. По некоторым оценкам производительность компьютера на разных классах задач на 40-50% определяется характеристиками ЗУ различных типов, входящих в его состав.

К основным параметрам, характеризующим запоминающие устройства, относятся емкость и быстродействие.

Емкость памяти – это максимальное количество данных, которое в ней может храниться.

Емкость   запоминающего устройства измеряется количеством адресуемых элементов (ячеек) ЗУ и длиной ячейки в битах.

В настоящее время практически все запоминающие устройства в качестве минимально адресуемого элемента используют 1 байт (1 байт = 8 двоичных разрядов (бит)).

Поэтому емкость памяти обычно определяется в байтах, килобайтах (1Кбайт=210 байт), мегабайтах (1Мбайт = 220 байт), гигабайтах (1Гбайт = 230 байт) и т.д.

За одно обращение к запоминающему устройству производится считывание или запись некоторой единицы данных, называемой словом, различной для устройств разного типа. Это определяет разную организацию памяти. Например, память объемом 1 мегабайт может быть организована как 1М слов по 1 байту, или 512К слов по 2 байта каждое, или 256К слов по 4 байта и т.д.

В то же время, в каждой ЭВМ используется свое понятие машинного слова, которое применяется при определении архитектуры компьютера, в частности при его программировании, и не зависит от размерности слова памяти, используемой для построения данной ЭВМ. Например, компьютеры с архитектурой IBM PC имеют машинное слово длиной 2 байта.

Быстродействие памяти определяется продолжительностью операции обращения, то есть временем, затрачиваемым на поиск нужной информации в памяти и на ее считывание, или временем на поиск места в памяти, предназначаемого для хранения данной информации, и на ее запись:

tобр = max(tобр сч, tобр зп)

где tобр сч – быстродействие   ЗУ при считывании информации; tобр зп – быстродействие   ЗУ при записи.

Запоминающие устройства можно классифицировать по целому ряду параметров и признаков. На рис.5.1 представлена классификация по типу обращения и организации доступа к ячейкам ЗУ.

Рис. 5.1. Классификация запоминающих устройств

По типу обращения ЗУ делятся на устройства, допускающие как чтение, так и запись информации, и постоянные запоминающие устройства (ПЗУ), предназначенные только для чтения записанных в них данных ( ROM – read only memory ).

ЗУ первого типа используются в процессе работы процессора для хранения выполняемых программ, исходных данных, промежуточных и окончательных результатов. В ПЗУ, как правило, хранятся системные программы, необходимые для запуска компьютера в работу, а также константы.

В некоторых ЭВМ, предназначенных, например, для работы в системах управления по одним и тем же неизменяемым алгоритмам, все программное обеспечение может храниться в ПЗУ.

В ЗУ с произвольным доступом ( RAM – random access memory ) время доступа не зависит от места расположения участка памяти (например, ОЗУ ).

В ЗУ с прямым (циклическим) доступом благодаря непрерывному вращению носителя информации (например, магнитный диск – МД) возможность обращения к некоторому участку носителя циклически повторяется. Время доступа здесь зависит от взаимного расположения этого участка и головок чтения/записи и во многом определяется скоростью вращения носителя.

В ЗУ с последовательным доступом производится последовательный просмотр участков носителя информации, пока нужный участок не займет некоторое нужное положение напротив головок чтения/записи (например, магнитные ленты – МЛ).

Как отмечалось выше, основные характеристики запоминающих устройств – это емкость и быстродействие. Идеальное запоминающее устройство должно обладать бесконечно большой емкостью и иметь бесконечно малое время обращения.

На практике эти параметры находятся в противоречии друг другу: в рамках одного типа ЗУ улучшение одного из них ведет к ухудшению значения другого. К тому же следует иметь в виду и экономическую целесообразность построения запоминающего устройства с теми или иными характеристиками при данном уровне развития технологии.

Поэтому в настоящее время запоминающие устройства компьютера, как это и предполагал Нейман, строятся по иерархическому принципу (рис. 5.2).

Рис. 5.2. Иерархическая организация памяти в современных ЭВМ

Иерархическая структура памяти позволяет экономически эффективно сочетать хранение больших объемов информации с быстрым доступом к информации в процессе ее обработки.

На нижнем уровне иерархии находится регистровая память – набор регистров, входящих непосредственно в состав микропроцессора (центрального процессора – CPU ).

Регистры CPU программно доступны и хранят информацию, наиболее часто используемую при выполнении программы: промежуточные результаты, составные части адресов, счетчики циклов и т.д. Регистровая память имеет относительно небольшой объем (до нескольких десятков машинных слов).

РП работает на частоте процессора, поэтому время доступа к ней минимально. Например, при частоте работы процессора 2 ГГц время обращения к его регистрам составит всего 0,5 нс.

Оперативная память – устройство, которое служит для хранения информации (программ, исходных данных, промежуточных и конечных результатов обработки), непосредственно используемой в ходе выполнения программы в процессоре.

В настоящее время объем ОП персональных компьютеров составляет несколько сотен мегабайт. Оперативная память работает на частоте системной шины и требует 6-8 циклов синхронизации шины для обращения к ней.

Так, при частоте работы системной шины 100 МГц (при этом период равен 10 нс) время обращения к оперативной памяти составит несколько десятков наносекунд.

Для заполнения пробела между РП и ОП по объему и времени обращения в настоящее время используется кэш-память, которая организована как более быстродействующая (и, следовательно, более дорогая) статическая оперативная память со специальным механизмом записи и считывания информации и предназначена для хранения информации, наиболее часто используемой при работе программы. Как правило, часть кэш-памяти располагается непосредственно на кристалле микропроцессора (внутренний кэш ), а часть – вне его (внешняя кэш-память ). Кэш-память программно недоступна. Для обращения к ней используются аппаратные средства процессора и компьютера.

Внешняя память организуется, как правило, на магнитных и оптических дисках, магнитных лентах. Емкость дисковой памяти достигает десятков гигабайт при времени обращения менее 1 мкс.

Магнитные ленты вследствие своего малого быстродействия и большой емкости используются в настоящее время в основном только как устройства резервного копирования данных, обращение к которым происходит редко, а может быть и никогда.

Время обращения для них может достигать нескольких десятков секунд.

Следует отметить, что электронная вычислительная техника развивается чрезвычайно быстрыми темпами.

Так, согласно эмпирическому “закону Мура”, производительность компьютера удваивается приблизительно каждые 18 месяцев.

Поэтому все приводимые в данном пособии количественные характеристики служат по большей части только для отражения основных соотношений и тенденций в развитии тех или иных компонентов и устройств компьютеров.

Запоминающие устройства

Запоминающие устройства

ОЗУ

Микросхемы ОЗУ построена на биполярных и МДП транзисторах.

Элементом памяти в первых из них служит простейший триггер, во вторых – триггер или конденсатор, заряжаемый до напряжения, соответствующего единичному состоянию элемента.

Биполярные триггерные микросхемы обладают значительным быстродействием, а МДП микросхемы – большей емкостью ЗУ. Кроме того, МДП-микросхемы потребляют значительно меше энергии.

Типичный пример триггерного ОЗУ – параллельный регистр;. При четырех битах хранимой информации все его компоненты умещаются в одном корпусе с 14-ю выводами, обеспечивающими доступ ко всем входам и выходам четырех элементов памяти. Организация памяти в виде отдельных регистров применяется при создании ОЗУ малой ёмкости.

При увеличении емкости ОЗУ возникает проблема доступа к каждому элементу памяти при ограниченном числе выводов в корпусе.

Эта задача решается с помощью адресной организации ЗУ с использование дешифратора кода адреса. Как уже говорилось ранее, дешифратор с n адресными входами дешифрирует 2n состояний.

Таким образом, при четырёх входах можно организовать обращение к 16 элементам памяти при 10 к 1024 элементам.

Запоминающее устройство адресного типа состоит из трех основных блоков: массива элементов памяти (накопитель), блока адресной выборки (дешифратор адреса) и блока управления.

Рассмотрим назначение и взаимодействие этих блоков на примере ОЗУ на 64 бита с адресной организацией выборки 16 четырехразрядных слов (16 слов х 4 разряда = 64 бита).

Условное изображение и функциональная схема такой микросхемы приведены на рисунке 1,а. Массив памяти образован 16 четырехразрядными цепочками триггеров.

При сигнале V=0 одна из цепочек, соответствующая выставленному адресу А1—А4, переходит в рабочее состояние, и ее сигналы поступают на входы элемента И (7—10). При сигнале V-1 на всех выходах DС низкие уровни, и следовательно, все триггеры отключены от выходных шин накопителя.

При V=0 и W=0 на выбранную цепочку поступают информационные сигналы входы (D0—D4) и элементом 1 вырабатывается сигнал записи. В этом режиме при смене информации на входе ОЗУ происходит перезапись информации в данном слове массива.

При сигналах V=1 и W=0 входная информация проходит непосредственно на выход микросхемы, минуя массив триггере (дешифратор не выбирает ни одной из цепей). И, наконец, при V=1 и W=1 запрещена работа дешифратора, узла, вырабатывающего сигнал «Запись» и входных элементов И.

Рисунок 1

Таким образом, блок управления (десять элементов И) обеспечивает работу ОЗУ в режимах: запись, считывание, сквозной перенос, хранение информации.

Выходные логические элементы И выполнены по схеме с открытым коллектором, что позволяет соединять вместе выходы Q нескольких микросхем ОЗУ. При этом происходит наращивание емкости ОЗУ две микросхемы—32 слова, три—48 и т. д..

Адресное управление А1—А4, информационные входы D1—D4 и выход Q1—Q4 всех микросхем объединяют в общие шины, а выбор рабочего массива осуществляют дополнительным дешифратором по входам V и W. Так построена микросхема К155РУ2 рисунок 1,б.

Рисунок 2

При конструировании ОЗУ ёмкостью в сотни тысяч бит в одном корпусе возникают трудности с созданием дешифраторов с таким числом выходов. Их удалось преодолеть при построении матричных накопителей, в которых выборка каждого элемента памяти осуществляется не по одной шине, а по двум (по строкам и столбцам).

Функциональная схема такого ОЗУ емкостью 256 бит приведена на рисунке 2. Для выбора 256 ячеек необходимы восемь адресных входов. Они разделены на две четверки, каждая из которые управляет дешифратором на 16 положений.

При любой комбинации сигналов A1-A8 единичные значения сигналов на шине строки и шине столбца окажутся только у одного элемента памяти. Только этот элемент будет воспринимать управляющие сигналы, идущие по общим шинам: выбор микросхемы CS (Chip Select), разрядная шина 1, разрядная шина 0.

Анализ логической структуры блока местного управления (три элемента И) позволяет составить таблицу режимов работы этого ОЗУ.

CS
R/W
Функция

1
Запись в выбраную ячейку

Считыва6ние из выбранной ячейки

1

Хранение информации

1
1
Хранение информации

Выходной усилитель ОЗУ в режиме записи и хранения информации находится в третьем состоянии (состояние с высоким сопротивлением), что позволяет наращивать объем памяти так же, как и для микросхемы К155РУ2.

Цоколевка микросхем К176РУ2 и 1К561РУ2 (ОЗУ с такой структурой выполнены по КМДП технологии показана на рисунке 2,б.

Используя их, необходимо помнить, что информация на адресных (А1—А8) и информационном входах должна меняться при высоком уровне сигнала CS как в режиме записи, так и в режиме считывания. В противном случае будет разрушаться ранее записанная информация.

Смена информации должна производиться за время не менее 0,1 мкс до начала сигнала СS=0 либо не ранее чем через 0,5 мкс после его окончания.

ПЗУ

Постоянные ЗУ допускают только считывание занесенной в них информации. В ПЗУ по каждому n-разрядному адресу записано одно заранее установленное m-разрядное слово. Таким образом, ПЗУ являются преобразователями кода адреса в код слова, т. е. комбинационной системой с n входа- ми и m выходами.

Накопитель ПЗУ обычно выполняется в виде системы взаимно перпендикулярных шин, в пересечениях которых либо стоит (логическая 1), либо отсутствует (логический 0) элемент, связывающий между собой соответствующие горизонтальную и вертикальную шины.

Выборка слов производится так же, как и в ОЗУ, при помощи дешифратора. Выходные транзисторы усилителей могут быть с открытым коллектором или с третьим состоянием.

Тогда при стробирующем сигнале V=1 микросхема отключается от выходной шины, что позволяет наращивать память простым объединением выходов микросхем ПЗУ.

В настоящее время производиться огромное количество ПЗУ, или энергонезависимой памяти, как последовательного так и параллельного типа. В данной статье я расскажу только про параллельные ПЗУ так как для того чтобы рассказать про последовательные такие как I2.

Рассмотрим однократно программируемое ПЗУ к155ре3. Информационная ёмкость её 256 бит, организация 32х8. В этих ПЗУ элементом памяти является биполярный транзистор с выжигаемой перемычкой.

При программировании в ячейке где должен быть записан 0, через транзистор пропускают импульс тока, достаточного для разрушения перемычки.

Микросхема К573РФ6 ПЗУ с ультрафиолетовым стиранием, объём памяти 64Кбит организация 8192х8. Микросхема имеет в своём корпусе окошко, используемое пи стирании ультрафиолетовым светом. После стирания это окошко заклеивается светонепроницаемой плёнкой. После стирания все ячейки находятся в состоянии логической единицы.

Микросхема работает в режиме программирования когда напряжение источника питания 25 вольт, на входе -OE напряжение высокого уровня. Для записи информации необходимо подать байт данных на выходы данных. Адресные сигналы и сигналы данных имеют ТТЛ уровень.

Когда адресная и входная информация выставлена подается на вход -CE/PGM импульс программирования с уровнем ТТЛ и длительностью 50 мс. Импульс программирования подаётся для каждого байта записываемой информации. После программирования каждой ячейки необходимо проверить правильно ли она запрограммирована.

Если байт считанный с ПЗУ не соответствует записываемому то процедуру программирования для данное ячейки необходимо повторить.

Классификация запоминающих устройств

Запоминающие устройства

Важнейшим признаком классификации ЗУ (рис. 3.64) является способ доступа к данным.

Рис. 3.64. Классификация современных полупроводниковых запоминающих устройств

Все ячейки адресной памяти в момент обращения равнодоступны. Эти ЗУ наиболее разработаны, другие виды памяти часто строят на основе адресной памяти с соответствующими модификациями.

Адресные ЗУ делятся на RAM (Random Access Memory) u ROM (Read-Only Memory). Русские синонимы термина RAM: ОЗУ (оперативные ЗУ) или ЗУПВ (ЗУ с произвольной выборкой). Оперативные ЗУ хранят данные, участвующие в обмене при выполнении текущей программы, которые могут быть изменены в произвольный момент времени.

В ROM (русский эквивалент – постоянные ЗУ (ПЗУ)) содержимое либо вообще не изменяется, либо изменяется, но редко и в специальном режиме. Для рабочего режима – это «память только для чтения».

Постоянная память типа Mask ROM, обозначенная как ROM(M), программируется при изготовлении методами интегральной технологии с помощью масок. На русском языке ее можно назвать памятью типа ПЗУМ (ПЗУ масочные). Для потребителя это в полном смысле слова постоянная память, т.к. изменить ее содержимое он не может.

В следующих четырех разновидностях ROM в обозначениях присутствует буква Р (от Programmable). Это программируемая пользователем память (в русской терминологии ППЗУ). В память типов PROM и EPROM-OTP содержимое записывается однократно (ОТР – One Time Programmable).

В ЗУ типов EPROM, EEPROM и FLASH содержимое может быть изменено путем стирания старой информации и записи новой.

В памяти EPROM (Erasable Programmable ROM) стирание выполняется облучением кристалла ультрафиолетовыми (УФ) лучами, ее русское название РПЗУ-УФ (репрограммируемое ПЗУ с УФ-стиранием).

В EEPROM (Electrically Erasable Programmable ROM) стирание производится электрическими сигналами (ЭС), ее русское название РПЗУ-ЭС (репрограммируемое ПЗУ с электрическим стиранием) или ЭСППЗУ (электрически стираемое программируемое ПЗУ). Запись данных в EPROM, EEPROM и FLASH производится электрическими сигналами.

Программирование PROM, EPROM и EEPROM производится в обычных лабораторных условиях. Для ЗУ типов PROM и EPROM это делается с помощью программаторов.

Для EEPROM возможно также использование специальных режимов для программирования без изъятия микросхемы из устройства, в котором она используется.

Запоминающие элементы памяти типа FLASH подобны применяемым в EPROM и EEPROM, но эта память имеет структурные и технологические особенности, позволяющие выделить ее в отдельный вид.

RAM делятся на статические и динамические. В статических RAM запоминающими элементами являются триггеры, сохраняющие свое состояние, пока схема находится под питанием и нет новой записи данных. В динамических RAM данные хранятся в виде зарядов конденсаторов, образуемых элементами МОП-структур.

Саморазряд конденсаторов ведет к разрушению данных, поэтому они должны периодически (каждые несколько миллисекунд) регенерироваться, что усложняет эксплуатацию ЗУ. Плотность упаковки элементов динамической памяти в несколько раз превышает плотность упаковки, достижимую в статических RAM.

Динамические ЗУ имеют высокую информационную емкость.

Разработаны также ЗУ с динамическими запоминающими элементами, имеющие внутреннюю встроенную систему регенерации, у которых внешнее поведение становится аналогичным поведению статических ЗУ. Такие ЗУ иногда называют квазистатическими.

Статические ОЗУ в английской и международной терминологии называются SRAM (Static RAM), а динамические – DRAM (Dynamic RAM).

Статические ОЗУ делятся на асинхронные и синхронные. Асинхронные ОЗУ названы также стандартными, т.к. до недавнего времени они были практически единственными представителями статических микросхем памяти.

В асинхронных ЗУ после произвольного по времени обращения к памяти до выдачи данных проходит определенное время, которое является параметром самой памяти, не связанным с параметрами системы синхронизации процессора.

Ввиду отсутствия увязки моментов обращения к памяти и моментов выработки ею готовых данных с синхросигналами процессора могут возникать дополнительные задержки обмена данными между ЗУ и процессором.

Асинхронные статические ОЗУ можно разделить на нетактируемые и тактируемые. В нетактируемых сигналы управления могут задаваться как импульсами, так и уровнями. В тактируемых ЗУ некоторые сигналы обязательно должны быть импульсными.

В синхронных ОЗУ длительности этапов работы памяти жестко связаны с синхросигналами системы, и это позволяет исключить неоправданные потери времени при обмене данными между памятью и процессором, а также организовать конвейерную обработку данных. Таким образом, синхронность памяти является средством повышения ее быстродействия.

Это важный способ повышения быстродействия, применяемый как в статических, так и в динамических микросхемах памяти. Применение синхронных ОЗУ не является единственным способом повышения их быстродействия.

Среди других методов повышения быстродействия статических ОЗУ можно назвать ускорение реверса шины при переходе от передачи данных в одном направлении к другому и использование интерфейса DDR (передача сигнала с двойной скоростью).

Статические ОЗУ выполняются как однопортовые (обычные) и многопортовые. Многопортовые ЗУ специализированы для определенных применений. В них возможны одновременные обращения более чем к одной ячейке, например, в двупортовых ЗУ возможно считывание информации из одной ячейки и одновременная запись в другую. Подобные режимы полезны при разделении памяти между двумя или более абонентами.

Динамические ЗУ характеризуются наибольшей информационной емкостью и невысокой стоимостью, поэтому именно они используются как основная память ЭВМ. Базовая структура динамических ЗУ названа стандартной. Поскольку желательно получить от основной памяти ЭВМ максимально возможное быстродействие, разработаны многочисленные способы его повышения.

Статические ЗУ в 4–5 раз дороже динамических и приблизительно во столько же раз меньше по максимально достижимой информационной емкости. Их достоинством является высокое быстродействие, а типичной областью использования – схемы кэш-памяти, буферы FIFO и LIFO, память данных небольшой емкости для микроконтроллеров, быстродействующих коммуникационных устройств.

В ЗУ с последовательным доступом записываемые данные образуют некоторую очередь. Считывание происходит из очереди слово за словом либо в порядке записи, либо в обратном порядке. Моделью такого ЗУ является последовательная цепочка запоминающих элементов, в которой данные передаются между соседними элементами.

Прямой порядок считывания имеет место в буферах FIFO с дисциплиной «первый пришел – первый вышел» (First In – First Out), а также в файловых и циклических ЗУ.

Разница между памятью FIFO и файловым ЗУ состоит в том, что в FIFO запись в пустой буфер сразу же становится доступной для чтения, т.е. слово поступает в конец цепочки (модели ЗУ). В файловых ЗУ данные поступают в начало цепочки и появляются на выходе после некоторого числа обращений, равного числу элементов в цепочке.

При независимости операций считывания и записи фактическое расположение данных в ЗУ на момент считывания не связано с каким-либо внешним признаком. Поэтому записываемые данные объединяют в блоки, обрамляемые специальными символами конца и начала (файлы).

Прием данных из файлового ЗУ начинается после обнаружения приемником символа начала блока.

В циклических ЗУ слова доступны одно за другим с постоянным периодом, определяемым емкостью памяти. К такому типу среди полупроводниковых ЗУ относится видеопамять (VRAM).

Считывание в обратном порядке свойственно стековым ЗУ, для которых реализуется дисциплина «последний пришел – первый вышел». Такие ЗУ называют буферами LIFO (Last In – First Out).

Время доступа к конкретной единице хранимой информации в последовательных ЗУ представляет собою случайную величину. В наихудшем случае для такого доступа может потребоваться просмотр всего объема хранимых данных.

Ассоциативный доступ реализует поиск информации по некоторому признаку, а не по ее расположению в памяти (адресу или месту в очереди).

В наиболее полной версии все хранимые в памяти слова одновременно проверяются на соответствие признаку, например на совпадение определенных полей слов (тегов) с признаком, задаваемым входным словом (теговым адресом). На выход выдаются слова, удовлетворяющие признаку.

Дисциплина выдачи слов, если тегу удовлетворяют несколько слов, а также дисциплина записи новых данных могут быть разными. Основная область применения ассоциативной памяти в современных ЭВМ – кэширование данных.

Технико-экономические параметры ЗУ существенно зависят от их схемотехнологической реализации. По этому признаку также возможна классификация ЗУ, однако удобнее рассматривать этот вопрос применительно к отдельным типам памяти.

Внешние запоминающие устройства. Внешняя память компьютера. Магнитные накопители. Накопители на жестких дисках. Винчестер

Запоминающие устройства

На этой страничке мы поговорим на такие темы, как : Внешние запоминающие устройства, Внешняя память компьютера, Магнитные накопители, Накопители на жестких дисках, Винчестер.

Внешняя память компьютера, Внешние запоминающие устройства

Внешняя память компьютера или ВЗУ — важная составная часть электронно-вычислительной машины, обеспечивающая долговременное хранение программ и данных на различных носителях информации.

 Внешние запоминающие устройства (ВЗУ) — можно классифицировать по целому ряду признаков : по виду носителя, по типу конструкции, по принципу записи и считывания информации, по методу доступа и т.д.

При этом под носителем понимается материальный объект, способный хранить информацию.

Свойства внешней памяти :

  • ВЗУ энергонезависима, целостность её содержимого не зависит от того, включен или выключен компьютер .
  • В отличие от оперативной памяти, внешняя память не имеет прямой связи с процессором.

В состав внешней памяти включаются :

  • НЖМД – накопители на жёстких магнитных дисках.
  • НГМД – накопители на гибких магнитных дисках.
  • НОД – накопители на оптических дисках (компакт-дисках CD-R, CD-RW, DVD).
  • НМЛ – накопители на магнитной ленте (стримеры).
  • Карты памяти.

Накопители – это запоминающие устройства, предназначенные для длительного (то есть не зависящего от электропитания) хранения больших объемов информации.

Кроме основной своей характеристики – информационной емкости – дисковые накопителихарактеризуются и двумя другими показателями : временем доступа и скоростью считывания последовательно расположенных байтов.

Накопители на жестких дисках

Накопитель на жёстких магнитных дисках (HDD – Hard Disk Drive, винчестер) — это запоминающее устройство большой ёмкости, в котором носителями информации являются круглые алюминиевые пластины, обе поверхности которых покрыты слоем магнитного материала.

Используется для постоянного хранения информации — программ и данных.

 HDD обычно называют «винчестером» – так в свое время стали называть одну из первых моделей Накопителя на жёстких магнитных дисках, которая имела обозначение «30/30» и этим напоминала маркировку известного оружия.

Примечание

Винчестер

Поверхность диска рассматривается как последовательность точечных позиций, каждая из которых считается битом и может быть установлена в 0 или 1.

Так как расположения точечных позиций определяется неточно, то для записи требуются заранее нанесенные метки, которые помогают записывающему устройству находить позиции записи.

Процесс нанесения таких меток называется физическим форматированием и является обязательным перед первым использованием накопителя. Винчестеры имеют очень большую ёмкость : от сотен Мегабайт (самые старые) до десятков терабайт.

Структурные элементы винчестера

На каждой стороне каждой пластины размечены тонкие концентрические окружности (по ним располагаются синхронизирующиеся метки). Каждая концентрическая окружность называется дорожкой.

Группы дорожек (треков) одного радиуса, расположенных на поверхностях магнитных дисков, называются цилиндрами.
Номер цилиндра совпадает с номером образующей дорожки.

 HDD могут иметь по несколько десятков тысяч цилиндров.

Каждая дорожка разбивается на секторы. Сектор – наименьшая адресуемая единица обмена данными дискового устройства с оперативной памятью. Нумерация секторов начинается с 1. Для того чтобы контроллер диска мог найти на диске нужный сектор, необходимо задать ему все составляющие адреса сектора : номер цилиндра, номер поверхности, номер сектора ([c-h-s]).

Операционная система при работе с диском использует, как правило, собственную единицу дискового пространства, называемую кластером. Кластер (ячейка размещения данных) — объем дискового пространства, участвующий в единичной операции чтения/записи, осуществляемой операционной системой.

Магнитные накопители

Накопитель на гибких магнитных дисках — Гибкий диск, дискета (англ. floppy disk) – устройство для хранения небольших объёмов информации, представляющее собой гибкий пластиковый диск в защитной оболочке. Наиболее распространены – «трехдюймовые дискеты».

Дискета 3,5 имеет 2 рабочие поверхности, 80 дорожек на каждой стороне, 18 секторов на каждой дорожке (512 байт – каждый сектор).

Устройство дискеты : Принцип записи на магнитных носителяхоснован на намагниченности отдельных участков магнитного слоя носителя. Информация записывается по концентрическим дорожкам (трекам), которые делятся на секторы.

Количество дорожек и секторов зависит от типа и формата дискеты. Сектор хранит минимальную порцию информации, которая может быть записана на диск или считана. Емкость сектора постоянна и составляет 512 байтов.

Примечание

Накопители на магнитной ленте (стримеры)

Стример (англ. tape streamer) – устройство для резервного копирования больших объёмов информации. В качестве носителя здесь применяются кассеты с магнитной лентой ёмкостью 1 — 2 Гбайта и больше. Недостатком стримеров является их сравнительно низкая скорость записи, поиска и считывания информации.

Примечание

На этом данную статью я заканчиваю, надеюсь, вы полностью разобрались с темами : Внешние запоминающие устройства, Внешняя память компьютера, Магнитные накопители, Накопители на жестких дисках, Винчестер.

Запоминающие устройства

Запоминающие устройства

1.8.  Запоминающие устройства

Мы уже знаем, что для хранения 1 бита информации может быть использован триггер. Набор триггеров образует регистровое запоминающее устройство. Выпускаемые промышленностью микросхемы памяти можно классифицировать по различным признакам.

По функциональному назначению микросхемы памяти подразделяют на микросхемы постоянных запоминающих устройств (ПЗУ) и микросхемы оперативных запоминающих устройств (ОЗУ). Постоянные запоминающие устройства работают в режимах хранения и считывания информации. ОЗУ работают в режимах записи, хранения и считывания информации.

ОЗУ применяются для хранения кодов выполняемых программ и промежуточных результатов обработки информации.

Существует четыре типа микросхем ПЗУ: ROM (Read Only Memory) – постоянные запоминающие устройства; PROM (Programmable ROM) – программируемые постоянные запоминающие устройства; EPROM (Erasable PROM) – перепрограммируемые постоянные запоминающие устройства с ультрафиолетовым стиранием информации; EEPROM (Electrically Erasable PROM) – перепрограммируемые постоянные запоминающие устройства с электронным стиранием информации, также называемые flash ROM.

В зависимости от элемента памяти (ЭП) микросхемы ОЗУ подразделяют на статические и динамические. В статических ОЗУ элементом памяти является триггер на биполярных или полевых транзисторах. В динамических ОЗУ элементом памяти является конденсатор, в качестве которого обычно используется затвор полевого транзистора.

На принципиальных схемах обычно используют обозначения выводов микросхемы в соответствии с сигналами, присутствующими на этих выводах: А – адрес, С – тактовый, ST – строб, CAS – выбор адреса столбца, RAS – выбор адреса строки, CS – выбор кристалла, E – разрешение, WR – запись, RD – считывание, WR/RD – запись-считывание, OE – разрешение выхода, D – данные (информация), DI – входные данные, DO – выходные данные, REF – регенерация, PR – программирование, ER – стирание, UPR – напряжение программирования, UCC  –  напряжение питания,0V – общий.

Рассмотрим обобщенную структурную схему запоминающего устройства, приведенную на рисунке 1.62. Матрица накопителя имеет m строк и n столбцов. На пересечении строки и столбца располагается элемент памяти. Матрица накопителя, имеющая m строк и n столбцов, имеет m·n ячеек памяти. Для выборки строк и столбцов используют дешифраторы или демультиплексоры.

В запоминающих устройствах статического типа в качестве элементов памяти используют триггеры на биполярных или полевых транзисторах. Большее быстродействие имеют устройства на биполярных транзисторах. В качестве запоминающего элемента микросхем памяти статического типа может быть использован, например, D-триггер, снабженный специальным входом разрешения.

Для устойчивой работы микросхемы памяти при записи и чтении информации необходимо сигналы подавать в определенной последовательности и с допустимыми временными задержками. Микросхемы памяти характеризуются различными динамическими (временными) параметрами.

Длительность сигнала обозначают tw(B), а интервал между сигналами tREC(B), где B – обозначение сигнала. Для сигнала CS эти записи имеют вид:  tw(CS), tREC(CS).

Время установления одного сигнала относительно другого tSU(B-C)  определяется как интервал времени между началами двух сигналов на разных входах микросхемы, где В – обозначение сигнала, состояние которого изменяется первым, а С – обозначение сигнала, состояние которого изменяется в конце временного интервала. Время установления сигнала выборки микросхемы относительно сигналов адреса запишется в виде tSU(A-CS). Время сохранения одного сигнала после другого  tV(B-C) определяется как интервал времени между окончаниями двух сигналов на разных входах микросхемы, например tV(CS-A) – время сохранения сигналов адреса после снятия сигнала выборки микросхемы. Важными динамическими  параметрами микросхем памяти являются время выборки адреса tA(A) и время выборки tA(CS) (часто обозначается tCS) сигнала CS.

По режиму доступа микросхемы статических ОЗУ подразделяются на тактируемые и нетактируемые (асинхронные). Тактируемые микросхемы ОЗУ при каждом обращении к любой ячейке памяти требуют подачи импульса на вход CS. Сигналы разрешения выхода, записи-считывания могут быть поданы импульсом или уровнем.

микросхем имеют питающее напряжение 5 В. Микросхемы памяти К561 допускают напряжение питания от 6 до 12 вольт. Микросхемы серии К176 имеют питающее напряжение 9В. В серии К537 имеется более 20 микросхем, отличающихся информационной емкостью, быстродействием и потребляемой мощностью. Среди микросхем этой серии имеются тактируемые и асинхронные. 

На рисунке 1.63 приведено условное обозначение микросхемы КР537РУ3. При CS=1 (микросхема не выбрана) выход D0 находится в высоимпедансном состоянии, а сигналы на адресных входах, входе DI и входе WR/RD могут быть любыми.

Такой режим работы микросхемы называют режимом хранения.

В режиме чтения на входе CS должен быть сигнал логического нуля, на входе WR/RD сигнал логической единицы, на адресных входах установлен адрес необходимой ячейки памяти, а на выходе D0 в этом случае будет содержимое ячейки памяти.

Сигнал на входе DI в режиме чтения может быть любым. В режиме записи на входе CS должен быть сигнал логического нуля, на входе WR/RD сигнал логического нуля, на адресных входах установлен адрес необходимой ячейки памяти, а на входе DI данные, которые необходимо записать. Выход D0 находится в высокоимпедансном состоянии.

 Запоминающий  элемент памяти динамического типа имеет существенно меньше  радиотехнических элементов (транзисторы, конденсаторы, резисторы) и следовательно можно на одном кристалле разместить значительно больше запоминающих элементов по сравнению с их числом для памяти статического типа.

Микросхемы памяти динамического типа имеют существенно меньшее быстродействие.  Время доступа к ячейке памяти динамического типа  60-70 нс, а время доступа к ячейке памяти микросхем статического типа около 2  нс.

Микросхемы памяти статического типа  в компьютерах используют для так называемой кэш-памяти.

Рассмотрим  принцип хранения и регенерации информации в ОЗУ динамического типа. На рисунке 1.64 приведена схема, позволяющая понять принцип записи и регенерации информации в ОЗУ динамического типа. Данное запоминающее устройство содержит m строк по n разрядов каждая.

Запоминающим элементом памяти динамического типа является конденсатор. В реальных устройствах конденсатор образован емкостью затвор-исток транзистора VТ2. Если конденсатор заряжен, то транзистор VТ2 будет открыт, и такое состояние ассоциируется  с логическим нулем.

Если конденсатор разряжен, то транзистор VТ2 будет закрыт, и это соответствует логической единице. Конденсатор с течением времени разряжается, так как электронные ключи VТ1, VТ3 не являются идеальными. В природе нет также идеального конденсатора.

По этой  причине необходимо конденсатор периодически подзаряжать, если он был заряжен.

Пусть на входе запись «V» уровень логического нуля, а конденсатор С1 был заряжен. Для восстановления заряда конденсатора необходимо периодически  читать информацию. Рассмотрим разряд D0. Подадим напряжение логической единицы на линию выборки очередной строки, например, строки А0. В  этом случае транзисторы VТ1, VТ3 открываются, транзистор VТ2  также

открыт, так как мы рассматриваем случай, когда конденсатор С1 заряжен. Резистор R0, канал транзистора VТ3 и канал транзистора VТ2 образуют делитель напряжения, подаваемого от источника питания.

На линии чтения Q0 будет в этом случае  напряжение логического нуля  (выходное напряжение мало). Напряжение логического нуля подается на нижний вход элемента DD1.4, следовательно, на выходе элемента DD1.4 будет напряжение логического нуля.  На выходе элемента DD1.

2 будет напряжение логической единицы, так как на верхнем входе этого элемента  в рассматриваемый момент времени напряжение логического нуля (на входе V логический нуль). Конденсатор С1 заряжается по цепи: выход элемента DD1.

2 (логическая единица), через канал открытого транзистора VТ1, конденсатор С1, общий провод, минус источника питания.

Пусть конденсатор С1 разряжен. В этом случае на линии чтения будет напряжение, почти равное напряжению источника питания, то есть  напряжение логической единицы. Это напряжение подается на нижний  по схеме вход элемента DD1.4.

На верхнем входе этого элемента в рассматриваемый  момент времени  напряжение логической единицы, так как на вход запись V подано напряжение логического нуля. На выходе элемента DD1.4 будет логическая единица, а на выходе логического элемента DD1.

2 будет напряжение логического нуля и конденсатор С1 будет оставаться разряженным (конденсатор может заряжаться только по следующей цепи: выход элемента DD1.2, канал открытого  транзистора VТ1, конденсатор С1, общий провод,  минус источника). Таким образом, периодически читая информацию, мы обеспечиваем ее сохранность.

Для записи информации на входе D0 устанавливают логический нуль, или логическую единицу, на вход «V» подают напряжение логической единицы и выбирают строку, в которой находится необходимая ячейка памяти.

Занесение информации в микросхемы ПЗУ осуществляется либо при их изготовлении, либо потребителем. Микросхемы, информацию в которые заносит потребитель, называют программируемыми (ППЗУ).

Программирование микросхем ПЗУ осуществляется с помощью специального устройства, называемого программатором микросхем. Микросхемы ПЗУ, допускающие неоднократное программирование, называются репрограммируемыми ПЗУ (РПЗУ).

По способу стирания информации в РПЗУ микросхемы подразделяют на микросхемы с ультрафиолетовым стиранием информации (СППЗУ) и со стиранием электрическим сигналом (ЭСПЗУ).

Рассмотрим однократно программируемые пользователем микросхемы ПЗУ с пережигаемыми перемычками. На рисунке 1.65 показан фрагмент запоминающего устройства, имеющего n слов по 4 двоичных разряда каждое. Слово выбирается переключателем SA1.

В ПЗУ записаны следующие четырехразрядные слова: в строке X(n-3) – 1010, в строке X(n-2) –1000, и в строке X(n-1) –1111.

Для записи слова 1000 в строке X(n-2) необходимо поочередно на короткое время (десятые доли секунды) закоротить резисторы R2, R1, R0.

В качестве примера ПЗУ с пережигаемыми перемычками рассмотрим микросхему К155РЕ3, условное обозначение которой приведено на рисунке  1.66.

Упрощенная функциональная схема микросхемы К155РЕ3 приведена на рисунке 1.67. Логические элементы DD1.0-DD1.7 имеют выход с открытым коллектором. С выхода элемента DD1.0 на его вход подключается цепочка резистор R1.2, стабилитрон VD1, резистор R1.

1, транзистор VT1, необходимая при программировании микросхемы. Для остальных логических элементов DD1.1-DD1.7 эти цепочки на функциональной схеме не показаны.

При программировании на выход микросхемы  через  ограничительный резистор  сопротивлением

390 Ом подается напряжение 10-15 В, в результате чего пробивается стабилитрон VD1 и открывается транзистор VT1. Открывшийся транзистор закорачивает резистор R0 и перемычка в эмиттерной цепи транзистора необходимой ячейки памяти перегорает (для пережигания перемычки на время программирования увеличивают питающее напряжение).

На рисунке 1.68 приведена схема простого программатора для микросхем К155РЕ3. Переключателями SA0-SA4  задается адрес требуемой ячейки памяти размером 8 бит. Логические элементы DD1.1, DD1.2, резистор R4, конденсатор C1 образуют одновибратор, формирующий импульс записи.

Длительность импульса определяется сопротивлением резистора R4 и емкостью конденсатора C1. Кнопка SA5 находится в положении,  соответствующем выбранной микросхеме. В этом случае светодиод HL1 отображает записанную в разряде D1 информацию.

При нажатии на кнопку SA5 выходы программируемой микросхемы оказываются закрытыми, транзистор VT4 на короткое время закрывается, а транзисторы  VT1-VT3 – открываются. На вывод 16 программируемой микросхемы подается повышенное напряжение.

Кроме этого повышенное напряжение подается на один из выходов микросхемы, который подключается с помощью перемычки П1.

В репрограммируемых ПЗУ элементом памяти является специальный полевой транзистор с плавающим затвором. В зависимости от того имеет, или не имеет затвор заряд, ячейке памяти могут быть поставлены в соответствие либо логическая единица, либо логический нуль, причем любое из этих состояний может сохраняться в отсутствии питающего напряжения десятки тысяч часов.

На рисунке 1.69 схематически изображен полевой транзистор с плавающим затвором с индуцированным каналом p-типа. Если плавающий затвор не имеет заряда, сопротивление между выводами стока и истока транзистора большое.

При программировании между истоком и подложкой прикладывается большое импульсное напряжение, в результате чего электроны проходят через тонкий слой диэлектрика и накапливаются в затворе.

Между стоком и истоком транзистора образуется канал p-типа.

На рисунке 1.70,а  показано схематически устройство полевого транзистора с плавающим и управляющим затворами с каналом n-типа, а на рисунке 1.

70,б – стокозатворные характеристики этого транзистора для двух случаев (кривая 1 для случая отсутствия заряда на плавающем затворе, для кривой 2 плавающий затвор имеет отрицательный заряд).

Выбрав напряжение считывания так, как показано на рисунке 1.70,б, получаем ячейку памяти для хранения 1 бита информации.

На рисунке 1.71 приведена схема, поясняющая принцип хранения информации в ПЗУ с ультрафиолетовым стиранием информации. Выборка необходимой строки в данном ПЗУ осуществляется подачей сигнала логического нуля на соответствующую строку.

Пусть сигнал логического нуля подан на строку Ai и плавающий затвор транзистора VT2 имеет отрицательный заряд.

В этом случае открывается транзистор VT1, а так как транзистор VT2 открыт, то на резисторе Rj будет напряжение логической единицы.

На рисунке 1.72 показан фрагмент запоминающего устройства с полевыми транзисторами с плавающим и управляющим затворами. Выборка строки осуществляется сигналом логической единицы. При такой организации запоминающего устройства отрицательный заряд на плавающем затворе соответствет хранению логической единицы.

На рисунке 1.73 приведен фрагмент запоминающего устройства, в котором адресация необходимой ячейки памяти производится с помощью дешифратора строк DCX и дешифратора столбцов DCY. В селекторе происходит выделение необходимого числа разрядов на одну ячейку памяти, и сигналы с селектора поступают на устройство ввода-вывода УВВ.

Микросхема К573РФ2 с ультрафиолетовым стиранием информации, условное обозначение которой приведено на рисунке 1.74, имеет емкость 2 килобайта и допускает 100 циклов программирования. Имеются 4 модификации этой микросхемы: РФ21, РФ22, РФ23, РФ24. Микросхемы РФ21, РФ22 имеют емкость 1К х 8 бит.

На адресную линию А10 для микросхемы РФ21 подают логический нуль, а для микросхемы РФ22 – логическую единицу. Микросхемы РФ23, РФ24 имеют емкость 2К х 4 бит. В этих микросхемах используются все адресные линии.

В микросхеме РФ23 для ввода-вывода данных используют линии 11, 13, 14, 16, а в микросхеме РФ24 – линии 10, 11, 13, 16.

Напряжение программирования 25 В на микросхему К573РФ2 и ее модификации подают постоянным уровнем. Считывание информации из микросхемы производится в асинхронном режиме доступа к накопителю, при котором сигналы на входы CS и OE подаются уровнями. Указанные сигналы можно подавать и в форме импульсов [29].

В таблице 1.4 приведены режимы программирования (записи), считывания и хранения записанной информации для микросхемы К573РФ2.

                                                                                                Таблица 1.4

Сигнал
Запись
Считывание
Хранение

1*

1

1

X

UPR, В
25
5
5

DIO
DI
DO
Z

* – сигнал действует в течение 50 мс.

Внешние запоминающие устройства (стр. 1 из 2)

Запоминающие устройства

Южно-Уральский Государственный университет.

Реферат

По предмету: информатика.

На тему: Внешние

запоминающие устройства.

Студентки группы № ЭиУ-129

Кочеровой Евгении Ивановны

Преподаватель:

Елисеева Елена Альбертовна

Челябинск.

2005

Помимо оперативной памяти, компьютеру необходима дополнительная память для долговременного размещения данных. Такие устройства называются ВЗУ (внешние запоминающие устройства).

Различные способы хранения и записи информации служат для разных целей,
на сегодняшний день не существует универсального ВЗУ, которое может быть использовано как постоянное и переносное одновременно, и при этом быть доступным рядовым пользователям.

Информацию необходимо сохранять на носителях, не зависящих от наличия напряжения, и таких размеров, которые превышают возможности всех современных видов первичной памяти. Сравнительно долговременное хранилище данных, расположенное вне системной платы компьютера, называется вторичным хранилищем данных (secondary storage).

Внешняя (долговременная) память — это место длительного хранения данных (программ, результатов расчётов, текстов и т.д.), не используемых в данный момент в оперативной памяти компьютера. Внешняя память, в отличие от оперативной, является энергонезависимой.

Носители внешней памяти, кроме того, обеспечивают транспортировку данных в тех случаях, когда компьютеры не объединены в сети (локальные или глобальные). Для работы с внешней памятью необходимо наличие накопителя (устройства, обеспечивающего запись и (или) считывание информации) и устройства хранения — носителя.

В своей работе я рассмотрю следующие запоминающие устройства: винчестеры, дискеты,стримеры, флэш-карты памяти, MO-накопители, оптические:CD-R, CD-RW, DVD-R, DVD-RW, и новейшие запоминающие устройства.

Накопители на жёстких дисках (винчестеры).

Накопители на жёстком диске (винчестеры) предназначены для постоянного хранения информации, используемой при работе с компьютером: программ операционной системы, часто используемых пакетов программ, редакторов документов, трансляторов с языков программирования и т.д. Наличие жёсткого диска значительно повышает удобство работы с компьютером.

https://www.youtube.com/watch?v=sr1uAIwPvnI

С точки зрения операционной системы элементарной единицей размещения данных на диске является кластер. Он представляет собой группу секторов, с точностью до которой происходит размещение файлов на диске.

Сектор представ­ляет собой зону дорожки, в кото­рой собственно и хранятся разряды данных.

Количе­ство секторов на дорожке зависит от многих пере­менных, но в основном опреде­ляются суммарной длиной поля дан­ных и служебного поля, образующих сектор (горизонтальная плотность). размер сектора.

Емкость винчестера – его основная характеристика. Сегодня объем данных, которые можно записать должен быть не менее 10-15 Гб, но требования программного обеспечения постоянно растут, поэтому жесткий диск придется менять раз в 1-2 года в зависимости от то того насколько интенсивно и с какими целями используется компьютер.

Еще одой характеристикой является время доступа необходимое HDD для поиска любой информации на диске. Среднее время доступа, на сегодняшний день, для лучших IDE и SCSI дисков – это значение меньше 2 мс.

Среднее время поиска – время, в течение которого магнитные головки перемещаются от одного цилиндра к другому главным образом зависит от механизма привода головок, а не от интерфейса.

Скорость передачи данных, зависит от количества байт в секторе, количестве секторов на дорожке и от скорости вращения дисков (3000-3600 об./мин. Самые современные HDD – 7200 об./мин.).

Производители дают гарантию надежности устройства, которая обычно составляет 20000-500000 часов. Наработка винчестера за год составит 8760 часов, что делает этот параметр не важным, так как винчестер морально устареет раньше, чем физически.

Дискеты.

Дискета представляет собой круглый кусок гибкого пластика, покрытый магнитным окислом.

Магнитные диски, использующиеся на больших компьютерах, изготавливаются из жестких металлических пластин, а для дискет используются гибкие пластиковые кружки, что и дало им популярное название “гибкие” или “флоппи” – диски.

То, что эти диски были сделаны гибкими, значительно уменьшило вероятность их повреждения при обращении с ними и это в значительной мере определило их успех. Сейчас в компьютерах используются накопители для дискет размером 3,5 дюйма (89 мм) и ёмкостью 1,44 Мбайт.

Эти дискеты заключены в жёсткий пластмассовый конверт, что значительно повышает их надёжность и долговечность. На дискетах 3,5 дюйма имеется специальный переключатель – защёлка, разрешающая или запрещающая запись на дискету.

Магнитооптика.

Это, так называемые магнитооптические дисководы. МО-привод представляет собой накопитель информации, в основу которого положен магнитный носитель с оптическим (лазерным) управлением. Существуют следующие форматы магнитооптических дисков:Односторонние 3,5”,Двусторонние 5,25”, 2.5” диски MDData, разработанные фирмой Sony, 1.2” диски фирмы Maxell

Конечно, оптические накопители значительно опережают магнитооптические в скорости записи и объемах хранимых данных но, увы, значительно проигрывают им в надежности хранения данных.

Для примера, испортить данные на магнитооптическом диске довольно трудно; во-первых, диск заключен в картридж, предохраняющий от царапин; во-вторых — для того, чтобы стереть данные на магнитооптическом диске, необходимо нагреть его до очень высокой температуры Сегодня в продаже встречаются MOD 5,25”емкостью 4,6 Гб. Главное их преимущество, это возможность перезаписи информации. Тем не менее, эти устройства имеют слишком высокую цену.

Стримеры.

Стримеры(Tape Drive)-Устройства хранения данных на магнитной ленте, являются распространенным средством архивации данных.

Они относятся к категории устройств хранения Off-Line, для них характерно очень большое время доступа, обусловленное последовательным методом доступа, средняя скорость обмена и большая емкость носителя – от сотен мегабайт до нескольких гигабайт. Существуют стандарты: QIC, TRAVAN, DDS, DAT и DLT. Существуют стандарты: QIC, TRAVAN, DDS, DAT и DLT.

QIC (Quarter Inch Cartridge) отличается низким быстродействием, так как подключается к интерфейсу накопителей на гибких дисках. Существуют кассеты объемом от 40 Мб до 13 Гб.

TRAVAN разработан на основе QIC, в зависимости от объема информации, на которую рассчитана кассета (400-4000 Мб) использует контроллер накопителя на магнитных дисках или SCSI-2 (для кассет объемом 4000 Мб). DSS (Digital Data Storage) и DAT (Digital Audio Tape) стандарты разработаны фирмой Sony и используются для цифровой аудио и видео записи.

DLT – самый современный стандарт, появился в середине 90-х годов. Накопители, использующие эту технологию, могут хранить 20-40 Гб данных. Суммарная емкость ленточных библиотек построенных на основе DLT-кассет может достигать 5 Тб.

Флэш-память.

С появлением флэш-памяти производители электроники получили возможность без особых проблем и затрат оснастить свои устройства новым типом накопителей. Налицо были выгоды – низкое энергопотребление, высокая надежность (из-за отсутствия движущихся деталей) и устойчивость к внешним воздействиям и нагрузкам.

USB Flash Drive – портативное устройство для хранения и переноса данных с одного компьютера на другой. Компактный, легкий, удобный и удивительно простой в эксплуатации.

Для его работы не нужны ни соединительные кабели, ни источники питания (включая батарейки), ни дополнительное программное обеспечение.

Особенности USB Flash Drive: высокая скорость обмена данными по USB, защита от записи переключателем на корпусе , защита данных паролем, не требуются драйверы и внешнее питание, может быть отформатирован как загрузочный диск , хранение данных до 10 лет.

В 1994 году корпорация SanDisk представила первую ревизию спецификаций CompactFlash. Теоретический предел емкости накопителей на базе CompactFlash – 137 Гбайт. На данный момент на рынке доступны модели емкостью от 16 Мбайт (которые потихоньку становятся архаизмами) до 12 Гбайт.

Но самые распространенные – на 1 и 2 Гбайта. CompactFash – самый популярный формат на цифровых фотокамерах профессионального уровня.

В 2000 году компаниями SanDisk, Matsushita Electric и Toshiba был создан союз , названный SecureDigital Card Association До 2003-2004 года на рынке карт памяти существовал ярко выраженный лидер CompactFlash.

Этому способствовали несколько обстоятельств: емкость CF достигла 4 Гбайт, в то время как SD остановились на отметке 1 Гбайт; скорость работы CF значительно превышала возможности конкурента; целый легион компаний производил всевозможные контроллеры в формате CF.

Однако с 2004 года стало заметно, что SecureDigital очень сильно укрепил позиции и догоняет более «старого» конкурента. Если раньше CF был де-факто единственный открытый стандарт, пригодный для использования в мобильных устройствах, то теперь производители новой портативной техники стали массово переходить на SD из-за их меньшего размера.

Оптическая технология.

Самым распространенным представителем этого семейства является СD-ROM. Его характерезуют следующие показатели:

-По сравнению с винчестером он надежнее в транспортировке

-CD-ROM имеет большую емкость, порядка 700Мб

-CD-ROM практически не изнашивается

Минимальная скорость передачи данных у CD-ROM составляет 150Кбайт/с и возрастает в зависимости от модели привода, т.е. 52-х скоростной CD-ROM ,будет иметь 52*150 = 7,8Мб/с.

CD-ROM являются, в основном, адаптацией компакт-дисков цифровых аудиозаписывающих систем. Цифровые данные записываются на диск, используя специальное записывающее устройство, которое наносит микроскопические ямки на поверхности диска.

Информация, закодированная с помощью этих ямок, может быть прочитана просто путем регистрации изменения отраженности (ямки будут темнее, чем фон блестящего серебристого диска).

Как только CD-ROM будет отштампован с помощью прессов, данные уже не могут быть изменены, углубления будут вечны.

Оцените статью
Просто о технологиях
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: